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SECTION 1

PURPOSE

The purpose of these investigations is to perform research on the basic
components of an electrolyte-soluble carbonaceous fuel - air fuel cell. The major
emphasis of the program is on the simultaneous development of all components in
order to optimize the performance of the entire cell and to take into account inter-
actions between components.

This work is aimed toward the development of a practical fuel cell using
a partially oxidized hydrocarbon as the fuel and air as the oxidant. The fuel must
be capable of reacting completely to CO2, be reasonably available, and pose no un-
usual corrosion, toxicity, or handling problems. 1In addition the cell must use a
CO02 rejecting electrolyte and operate at temperatures and pressures below 152°C and
5 atm. Other objectives include high electrical output per unit weight and volume,
high efficiency, long life, high reliability, reasonable cost, and ruggedness.

The program is divided into three parts. These are referred to as Tasks
A, B, and C in this report. Tasks A and B are, respectively, the development of
improved fuel electrodes, and the development of practical air electrodes. Task C
includes work carried out on establishing the basic cell design, especially with
regard to the operation of all components in a single cell.



SECTION 2

ABSTRACT

Research on the soluble carbonaceous fuel - air fuel cell has continued
to concentrate on improving the performance of individual cell components and on
translating these results into compatible electrode-electrolyte systems. These
efforts encompass work carried out in three areas, namely the development of the
fuel electrode, the development of the air electrode, and their combination into
a total cell.

2.1 Task A, Fuel Electrode

A number of catalysts were prepared by the simultaneous reduction of
noble and base metals with NaBH,. The Tafel slopes and exchange currents of Pt
containing catalysts varied widely but their activities at practical current den-
sities usually fell within a narrow range due to a compensating effect of the
kinetic parameters. However, this compensating effect was not general since co-
catalysts based on other noble metals did not always behave in a similar fashion.
These changes in catalyst performance are due to alloy formation and the NaBH4
reduction represents a convenient process for the preparation of a wide variety
of alloys.

A new P-type catalyst was tested with CH30H and found to lower the
polarization at practical current densities about 150 mv from that obtained with
Pt. This represents the most active catalyst yet prepared. Studies were also
continued on the Pt-Mo catalyst, previously shown to exhibit significantly lower
polarizations at about 1 ma/cm? with CH30H. Large increases in current density
at low polarizations could not be obtained with this system. However, using Mo
in solution resulted in current densities in excess of 200 ma/cm2 at low polariza-
tion when HCHO was employed, showing that this system could possibly have some
practical significance. Mechanism studies indicated that the reaction involved
a surface redox couple.

2.2 Task B, Air Electrode

The electrochemical performance of the HNO3 redox couple has proven
satisfactory. Therefore, research efforts have concentrated on improving the chemical
regeneration of HNO3 and applying the results in a practical cell configuration.

Regeneration efficiencies of 14 coulombs/coulomb equivalent to HNO3
consumed have been achieved in laboratory studies with air through the use of
foaming surfactants. This efficiency was extended to 25 regenerations through
the addition of a small amount of high surface area silica powder to the foam.
Of the surfactants tested, sodium nonyl oxidibenzene disulfonate has exhibited
the best chemical stability, 90 hours under load.

Engineering studies have been initiated in a compact cell with an
external regeneration chamber. Limitations of hold up and hydrolysis in this
chamber were overcome by increasing HNOj recycle to the cell and use of saturated
packings.



The regeneration efficiency with air was further increased to the values
obtainable in the laboratory by using dense foam and cooling of the external
chamber. Furthermore, regeneration efficiency in the dense foam was not sensitive
to air flow rate at velocities equivalent to 1-2 times the stoichiometric require-
ment.

2.3 Task C, The Total Cell

A new compact cell was built designed to permit the convenient testing of
both individual components and total cell operation, and to avoid contaminants
introduced by materials of construction. Preliminary tests in the cell of a
platinized Pt fuel electrode showed the importance of careful control of the fuel
feed rate, firm packaging of the electrodes, and proper current collection.

Suitable modifications were made in this test cell to improve these
factors and a long term fuel electrode performance test begun. The cell was run
at a current density of 50 ma/cm? in 30 wt% H2S04 and 1 vol % CH30H. The same
H2804 was recycled through the cell with continuous addition of CH30H and H20.
After more than 800 hours of operation, the polarization was only slightly increased.
However, periodic open circuiting for several seconds was required. Material
balances during this run confirmed the complete conversion of CH30H to CO2. The
loss of CH30H in the CO2 exhaust amounted to 3% of the amount reacted electro-
chemically. Furthermore, the diffusion of CH30H beyond the 80 mesh electrode
was found to be negligible during cell operation with the 1 vol 7 fuel concentra-
tion.

Preliminary tests of total cell operation were made using the CH30H fuel
electrode and an HNO3 redox air electrode. Current densities as high as 95 ma/cm?
and power densities of up to 15 mw/cm? were obtained at the terminals. The power
output was somewhat lower than predicted due to higher than desired membrane
resistance and lower than normal fuel electrode activity. However, these tests
show that the cell components can be combined in a compact total cell without
severe losges due to interaction effects.

Additional evaluation of the effect of HySO;4 concentration on total cell
voltage showed that the optimum is at about 30 wt %. Furthermore, a broad plateau
exists in which cell voltage does not vary by more than 20 mv. Therefore, 30 wt %
Hp80Q; will continue to be the standard electrolyte concentration.
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December 13, 1962 - Esso Research Cencter, Linden, New Jersey

Organizations Represented: Esso Research and Engineering Company
United States Army Electronics Research
and Development Laboratory

The purpose of the meeting was to brief Dr. H. Hunger, project engineer
for the U.S. Army Electronics Research and Development Agency, on our progress in
all aspects of the program.

3.3 Reports

This report is written in conformance with the detailed reporting require-

ments as presented in the Signal Corps Technical Requirement on Technical Reports
(SCL-2101N, 14 July 1961) under the terms of our contract; these requirements differ
from the usual requirements for reports issued within Esso Research and Engineering

Comp any.
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SECTION &

PACTUAL DATA

4.1 Task A, Fuel Electrode

Since a soluble carbonaceous fuel requires an acid electrolyte to permit
rejection of CO2, the catalyst must be stable in this medium. Although several
noble metals meet this requirement, they do not have sufficient catalytic activity.
Therefore, studies of the fuel electrode have concentrated on developing catalysts
containing noble metals to impart acid stability, and second components to enhance
their activity. Work has centered on the preparation and testing of these
catalysts, studying their mechanism, and determining their physical and chemical
properties.

Phase 1 - Catalyst Performance Studies
and New Preparative Techniques

Earlier work has shown that the addition of various metals to Pt often
produces catalysts whose kinetic parameters differ widely from pure Pt but whose
activities remain approximately constant (1). To improve upon this relatively
constant activity and to better understand its cause, a variety of catalysts were
prepared containing Pt or another noble metal as one component with one or more
noble or base metals added. These catalysts were made primarily by the NaBH4
reduction technique (1), although other methods and reducing agents were also
tested.

Part a - Performance of Binary Pt
NaBH4 Reduced Catalysts

A number of binary Pt catalyst systems were prepared by the NaBH; reduc-
tion of mixed salt solutions. Various base metals such as Cu, Ni, Co, Pb, V, W or
Mn added to Pt were tested, generally at only a single composition. All perform-
ance tests were run in 3.7 M HpS04 and 1 M CH30H at 60°C using pressed electrodes
described in Appendix A-1. Experimental measurements were made using equipment
previously detailed (1).

As in previous work with electrodeposited catalysts, it was found that
the addition of most metals to Pt increased its Tafel slope and exchange current.
As before however, these two effects compensate in such a way that catalyst
activity, as measured by polarization®*at a given practical current density, remains
essentially the same.

Thus, although Pt-Fe has an exchange current of 3 x 10-6 ma/cm2 compared
to 3 x 10-11 ma/em? for Pt, its Tafel slope is increased from 0.049 for Pt to 0.087.
The net result is that at a current density of 10 ma/cm2, Pt-Fe and Pt are both
polarized 0.56 volts from the theoretical CH30H open circuit potential. All other
Pt-cometal catalysts exhibited similar behavior, as shown in Table A-1.

* Polarization, unless otherwise noted, is defined here and elsewhere as the
difference between observed voltage and the voltage of a reversible electrode
operating with the same reactant, temperature, pressure, and electrolyte. It is
not che difference between observed and open circuit or standard reference
electrode voltages.

REREC_AY 3F



Tsble A-1 !

Performance Of NaBH; Reduced Pt-Bage Metal Catalysts

Polarization at 5
Indicated ma/cm? Kinetic Parameters
Catalyst 1 10 50 -log Ig
Pt 0.52 0.56 0.60 10.6 0.049
Pt-Fe 0:48 0056 0-63 5-5 0-087
Pt-w 0.49 0.55 0.60 8.0 0.062 T
Pt-V 0.51 0.57 0.61 8.2 0.062 '
Pt-Ni 0.50 0.56 0.61 8.0 0.062 :
Pt-Cu 0.52 0.59 0.64 6.8 0.076 .
Pt-Co 0.47 0.55 0.61 6.2 0.076 |
Pt-Pb 0.50 0.57 0.64 7.6 0.066 B
Pt-Mn 0.46 0.52 0.57 6.4 0.071

Although the electrodeposited catalysts studied earlier agree
qualitatively with these findings, an experimentally significant difference was i
observed between the magnitudes of the kinetic parameters of catalysts prepared by {
electrodeposition or by NaBH; redugtion. _Thus, electrodeposited Pt had an exchange
current and Tafel slope of 5 x 10°° ma/cm“ and 0.066 respectively while NaBH,,
reduced Pt showed values of 3 x 101l ma/cm? and 0.049. The other NaBHy reduced
catalysts had correspondingly smaller exchange currents and Tafel slopes than their
electrodeposited counterparts. Again, because of the compensation of the kinetic
parameters, activities remained about the same. It was also noted that a different
order for the kinetic parameter values of various cometals was obtained. However,
these effects with the binary catalysts may be due to differences in composition
from the corresponding electrodeposited catalysts. Although no work has been con-
ducted in this area, the differences between the two types of Pt may arise from
changes in their surface areas or types of crystal face exposed.

Part b - Effect of Au or Ir
Content on Pt Activity

Catalysts composed of varying amounts of Au or Ir in Pt were studied over
a range of 20.5 to 76.4 atom 7 Au and 8.5 to 61.3 atom % Ir. The original solutions
were made up to contain 20 to 807 Au and 20 to 807 Ir but because of the lower

reactivity of Ir salts with NaBH4, the actual content of this metal was somewhat
less.

A variation of kinetic parameters with composition was found for both
series of catalysts. The Pt-Ir samples reached a maximum exchange current of
1.6 x 10~7 ma/cm? at about 20 atom % Ir and then decreased to about 4 x 10~10 ma/cm2
at 35%, remaining constant after this out to pure Ir. With Pt-Au, no sharp maximum
was observed, rather a gradual increase to an average value of 2 x 10-7 ma/cm2 at .
about 407 Au. This remained constant out to the highest concentration studied. 4
Since pure Au has essentially no activity, a sharp decrease in exchange current can
be expected between 80 and 1007 Au. These results are shown in Figure A-1.
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Figure A-1
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with these two catalysts the compensating effect {s again operative so that no
Thus, as shown in Table A-2, the polariza-~
tions at 10 ma/cm? for all concentrations fall within 60 to 70 mv of each other.

sharp changes in activity are noted.

Table A-2

Effect Of Au Or Ir Addition On Polarization

Concentration of Polarization at Indicated ma/ cm?
Cometal, Atom % 1 10 30
Au
20.5 0.48 0.54 0.58
39.0 0.50 0.56 0.62
63.0 0.48 0.54 0.59
76.4 0.55 0.60 0.66
Ix
8.5 0.52 0.58 0.63
19.6 0.48 0.55 0.60
35.5 0.55 0.61 0.65
61.3 0.52 0.57 0.60




Part c - Other Binary and
Ternary Catalysts

The testing of other combinations of metals showed varied results. The
addition of Fe and Cu to Rh caused it to lose all its activity while the addition
of Au and Re produced catalysts which could not support current densities much
beyond 10 ma/cm2. Only Ir did not poison Rh. An Ir-Fe catalyst showed about the
same activity as pure Ir while Ir-Re was slightly less polarized, especially at
low current densities. Ternary combinations of Pt-Pd with Fe, Ir or Au showed
the same characteristics as a given pair of components. Thus Pt-Pd-Fe behaved
1ike Pt-Fe, Pt-Pd-Ir like Pt-Pd and Pt-Pd-Au as Pt-Au. These results as well as
those of all the catalyst results presented in this section are given in
Appendix A-2 , along with details of preparation and composition, where available.

Part d - New Catalyst Systems (P-Type)

New proprietary catalyst systems were prepared and tested in 3.7 M Hy50,
and 1 M CH30H. It was found that polarization could be reduced from that observed
with Pt by about 150 mv at 60°C, the most active proprietary catalyst being
polarized only 0.45 volts at 50 ma/cm?, Even at 25°C these catalysts retained as
much or more activity as Pt at 60°C, being polarized 0.53 volts at 10 ma/cm?
compared to 0.56 for Pt. When tested with HCHO instead of CH30H they showed a
large decrease in polarization, even greater than the 100 mv difference in
theoretical potentials of these two fuels. For example, at 50 ma/cm? at 60°C,

1 M HCHO showed a polarization of only 0.28 volts from the theoretical CH30H
potential. By contrast, on Pt, both CH3OH and HCHO exhibit the same activity.
Ethylene glycol was as active as CH30H on the new P-type catalysts while CH3CH20H
gave considerably more polarization. 1In both cases electrolyte discoloration
indicated the build-up of nonreactive intermediate products.

The addition of other metals to the basic proprietary catalysts in most
cases caused a performance loss. Only one metal caused no change while the worst

metal produced a 130 mv performance loss. These results are detailed in
Appendix A-3 and summarized in Tables A-3 and A-4 .

Table A-3

Activity Of P-Type Catalysts

3.7 M H2S04 - 1 M CH30H - 60°C

Polarization@ Indicated ma/cm2
Catalyst 1 10 50
Pt 0.52 0.56 0.60
P -Type 0.28 0.37 0.45
Modified P-Type, A 0.24 0.37 0.46
Modified P-Type, B 0.43 0.51 0.58

10




Table A-4

Activity Of New P-Type Catalyst With Various Fuels
3.7 M H2804 - 1 M Fuel - 60°C

Polarization@ Indicated ma/cm2
Fuel ] 10 50
CH30H 0.28 0.37 0.45
HCHO 0.14 0.22 0.28
CH3CH20H 0.61 0.71 0.81
CH2 (OH) CH20H 0.28 0.39 0.48

Part e - Reduction by NaBH,
in Nonaqueous Solvents

As part of the study of reducing agente other than NaBH,;, many of which
require H20 free media, several reductions were performed in nonaqueous solutions.
The first reducing agent used was NaBH4 itself to permit a direct comparison
between catalysts prepared by aqueous and nonaqueous reductions.

Three catalysts, Pt, Pt-Au and Pt-Fe were reduced in a CH30H solution of
NaBH4, using metal proportions of Pt-50 atom % Au and Pt-10 atom % Fe. All three
systems reacted vigorously and the resulting finely divided catalysts were pressed
into the sandwich electrodes described in Appendix A-1. They were then tested in
3.7 M H3S804 and 1 M CH30H at 60°C. It was found that their activities and kinetic
parameters agreed with the values of similar catalysts prepared in aqueous solution.
For examsle, Pt was polarized 0.55 volts from the theoretical CH3O0H potential at
10 ma/cmé compared to 0.56 volts for Pt made from an aqueous solution. The
corresponding Tafel slopes were 0.050 and 0.049 and the exchange currents 3 x 10-10
and 3 x 10"l ma/cm?. These results are shown in Table A-5.

Table A-5

Activity Of Catalysts Prepared In CH30H
60°C - 3.7 M H504 - 1 M CH30H

Polarization, Volts

at Indicated mg_/cm2 Kinetic Parameters
Catalyst 1 10 50 b -Log Ig
Pt 0.49 0.55 0.59 0.050 9.6
Pt-Au 507 0.43 0.54 0.58 0.058 8.4
Pt-Fe 107, 0.41 0.51 0.58 0.100 4.4

Part f - Other Reducing Agents

Reducing agents other than NaBH, also have been tested. Aqueous
solutions of 0.5 M hypophosphorous acid and ammoniacal 0.4 M hydrazine were reacted
with salt solutions of Pt, Fe, Au, Cu and Mo. In these tests, NoHy, reduced only Au,

11



Pt and Cu, in that order of reactivity, while Fe and Mo formed oxides. Hypophos-
phorous acid was poorer, reducing Au to the metal and Mo to molybdenum blue. No
reaction was noted with the other salts. Although NjH, reduced several of the
metals, its reaction rate was considerably less than that obtained with NaBH,.

Part g - Electrodeposited Catalysts

In addition to the work done with catalysts made by NaBH4 reduction,
some electrodeposited Pt and Pt-W electrodes were prepared for further comparison
of the two preparative techniques. Attempts were also made to electrodeposit W
and Mo from aqueous solution following procedures outlined in the literature 2.
The Pt electrodes were similar to earlier ones made under the same conditions
while a Pt-W electrode was somewhat poorer than Pt, being polarized 0.76 volts
from the theoretical CH30H potential at 50 ma/cm2 compared to 0.64 volts for Pt.
These results are shown in detail in Appendix A-4. It was not possible to electro-
deposit W alone from a solution of NapW0; and NayCO3 even with dextrose or FeClj
added. It was also found that Mo did not deposit from a solution of ammonium
paramolybdate in 10 wt % HAc saturated with KAc and NHzAc.

Part h - Catalysts of Difficultly
Reducible Metals

In addition to the metals successfully reduced by NaBH;, such as the
noble metals and some base metals, a number of others showed no reduction or only
a partial reduction stopping short of the metallic state when tested in the absence
of a more reactive material such as Pt. Thus Zn or Mn solutions yielded only
hydroxides upon reduction while W and Cr reacted only very slowly or not at all,
depending upon the temperature. In the cases of Mo and V, dark brown precipitates,
probably mixtures of oxides were obtained.

That the reduction of these less reactive metals may be catalyzed by the
coreduction of an active metal such as Pt is suggested by the electrochemical
behavior of catalysts prepared from, for example, a mixed Pt and W solution. It
is found that Pt-W has an average Tafel slope of 0.062 and exchange current of
1 x 10-8 ma/cm? compared to the values for Pt of 0.049 and 3 x 10-11 ma/cm2, even
though not enough W has been added to offer a clear-cut lattice spacing difference.
Table A-6 also shows similar effects with Mn, V and Mo.

Table A- 6

Evidence For Incorporation Of Difficultly
Reducible Metals Into Pt Catalyst

Kinetic Parameters Lattice
Catalyst b ~Log Ig Spacing, X
Pt 0.049 10.5 3.916
Pt-W 0.062 8.0 3.901
Pt-Mn 0.071 6.4 --
Pt-v 0.062 8.2 --
Pt-Mo 0.077 6.2 .-
12
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Part 1 - Other Catalysts

Catalysts other than those already mentioned were made by a variety of
techniques. H2WO4 was precipitated by acidification of NagWOy solution and tested
for catalytic activity in 3.7 M H2504 and 1 M CH30H at 60°C both by itself and
physically mixed with Pt black. Essentially no activity was observed in either
case. 1In addition, a bright Pt wire and a Pt-57 Ir wire, tested under the same
conditions, also failed to exhibit activity.

Phase 2 - Alloy Formation

As part of the program for finding more active fuel electrode catalysts
many of the materials prepared for the screening program were analyzed for alloy
formation. The purpose was to better understand the nature of the coreduced metal
catalysts.

Part a - Formation of Alloys

Many of the catalysts prepared for fuel electrode testing by NaBH,
reduction of mixed salt solutions were also examined for alloy formation by means
of X-ray diffraction. It was found that in almost all cases alloys were formed
during the low temperature reduction of mixed salt solutions. Alloys of Pt-Au and
Pt-Ir, which were most carefully studied, agreed with literature values of their
lattice constants. Only with a Pt-20.5 atom % Au and a Pt-61.3 atom % Ir composi-
tion were there large discrepancies. These might be explained by a lack of com-
plete alloying at these particular concentrations or perhaps by an error in the
X-ray determination. Figure A-2 shows these relations, with the solid lines
representing the literature values.

Figure A-2

Effect Of Alloy Composition On Lattice Spacing
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Additional evidence of alloy formation was the appearance of double sets of X-ray f
spectra when physical mixtures of Pt and Au or Pt and a Pt-Au alloy, for example,
were analyzed. These spectra were typical of pure Pt and pure Au or pure Pt and the
corresponding Pt-Au alloy respectively. Electrochemical results also confirmed the
alloying of Pt and Au. A physical mixture of Pt and Au had the same catalytic
behavior as pure Pt, since Au i{s inactive, while a Pt-Au alloy demonstrated the
kinetic parameters described in Phase 1, Part b.

The other catalysts have not been analyzed for metal contents as yet, but
their observed lattice constants fall within the limits of the values of the
individual components. Thus a Pt-Cu alloy showed a face centered cubic structure .
with the unit cube length of 3.791 A while Pt and Cu, both of which are also face i
centered cubic, have unit cube lengths of 3.916 and 3.607 A respectively. All other
alloys also showed face centered cubic structures except for Pt-Pb. This alloy had
the most complex structure, showing hexagonal, tetragonal, face centered cubic and -
body centered cubic phases. The first two correspond in structure and lattice }
constants with the PbPt and Pb,Pt intermetallic compounds and the face centered l
phase is probably a Pb rich solid solution. The fourth phase cannot yet be
accounted for. All of the alloys studied are presented in more detail in Appendix i
A'5 . H

Phase 3 - Performance of Heterogeneous
Mo-Containing Catalysts

It has been reported that a Pt-Mo catalyst can oxidize CH30H to CO2 at
polarizations as low as 0.2 volts from the theoretical CH30H potential. However,
at higher current densities an irreversible loss in performance to the level of
pure Pt was experienced. To extend this low polarization activity, additional Pt-
Mo catalysts have been prepared and tested. Also, metals other than Pt have been
tried as cocatalysts for Mo. Finally, other fuels have been run with Pt-Mo
electrodes to see if more active fuels can be found for this system.

Part a - Performance of Pt-Mo Catalysts

A Pt-Mo catalyst was run, in 3.7 M H2804 and 1 M CH30H at 60°C, for
136 hours at a polarization of from 0.21 to 0.27 volts at 1 ma/cm2. The gas
collected during this time was found to be CO2. Thus the average polarization
required for complete CH30H oxidation has been lowered to 0.24 volts for a Pt-Mo
catalyst. However, at higher current densities a rapid irreversible polarization
to the performance of Pt alone was again observed.

To regain the low polarization performance, Pt-Mo electrodes which had
been irreversibly polarized were anodized and/or cathodized in both their
electrolytes and in fresh acid to remove surface poisons or restore desorbed Mo.

In no case was any reversal of the performance loss achieved. Another electrode was
stripped of its catalyst. The catalyst was then redistributed on it in order to
expose a fresh surface. This treatment also failed to restore the initial activity.

A number of other Pt-Mo electrodes, prepared from catalysts receiving
various numbers of acid and/or Hy0 washes, were also tested but no significant per-
formance improvements were achieved. Complete results for all Pt-Mo catalysts are
given in Appendix A-6 .
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Part b - Pt-Mo Performance
With Various Fuels

A series of experiments were performed with Pt-Mo electrodes using HCOOH,
HCHO, CH3CH20H and ethylene glycols as fuels. All runs were made in 3.7 M HyS0,
and 1 M fuel at 60 or 80°C. Formaldehyde was the most active fuel in these systems,
allowing currents of greater than 16 and 32 ma/cm2 to be attained with low polariza-
tions at 60 and 80°C respectively. By comparison, CH3OH yielded only 1 and 4 ma/cm2
at these two temperatures before a rapid polarization increase. Formaldehyde was
polarized only 0.30 volts from the theoretical CH30H potential at 16 ma/cm? at 60°C
and 0.25 volts at 32 ma/cm2 at 82°C. Formic acid was intermediate, giving 8 ma/cm2
at 60°C with 0.29 volts polarization, while CH3CH20H and glycol were less active
than CH30H. These results are summarized in Table A-7 and shown more completely in
Appendix A- 6.

Table A-7

Effect Of Fuel On Pt-Mo Activity

Maximum Stable
Current Density, ma/cm2
Fuel 60°C. 80°C
CH30H 1 4
HCHO 16 32
HCOOH 8 -
CH3CH20H -- 2

Part ¢ - Activity of Mo With
Other Cocatalysts

In addition to Pt, other metals were tested as cocatalysts for the Mo
redox system. These included Au, Pd, Ir and Rh as well as Pt-Ir, Pt-Co and Pt-Fe
alloys and various combinations of alloyed or physically mixed Pt and Au. A
catalyst consisting of Pt-Mo adsorbed on activated charcoal was also tested. All
experiments were performed using 3.7 M H2S04 and 1 M CH30H at 60°C.

The only catalyst combination to perform better than Pt-Mo itself was a
Pt-Mo-Co greparation which supported a maximum low polarization current of about
1.8 ma/cm* compared to 1 ma/cm? for Pt-Mo. The performance loss at current densi-
ties beyond 1.8 ma/cm? remained irreversible however. A Pt-Mo-Fe catalyst gave
approximately the same activity as Pt-Mo while all the other combinations were
inferior. Some redox activity was observed with several, but Au-Mo, Ir-Mo and Pd-
Mo were completely inactive. These results are summarized in Appendix A-6.

Phase 4 - Mechanism of
Pt-Mo Catalysts

The earlier studies also reported that not only is an improvement in low
current density performance noted with Mo added to a heterogeneous catalyst, but
that a similar effect occurs when a soluble Mo compound is added directly to the
electrolyte. Work carried out to improve the solid catalysts has been
described in Phase 3. Studies of the mechanism of the CH30H-Mo system when Mo is
added to the solution will now be presented.
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Part a - Experimental Technique

Since it was suspected early in the study that the improvement in
electrode performance was due to a redox cycle - chemical reduction of molybdate by
fuel and electrochemical reoxidation - the work was carried out along lines designed
to investigate both the chemical and electrochemical steps. The chemical step was
followed by observing the products and rate of chemical reaction of Mo+6 (sodium or
ammonium molybdate) with CH30H or HCHO in pre-electrolyzed 3.7 M HyS04 at 82°C.

The electrochemical studies consisted of obtaining chronopotentiograms on a
platinized Pt microelectrode, under various conditions of molybdate - fuel inter-
action and adsorption, and a coulometric study to ascertain the extent of molybdate
reduction. Chronopotentiograms on the platinized Pt were observed oscilloscopically
and representative samples recorded photographically. Transient potentials were
measured against a reference electrode in the system. Polarizations in this study
are referred to the normal hydrogen reference electrode, designated N.H.E.

Part b - Chemical Reaction

The chemical reaction between molybdate (+6) and CH40H or HCHO was shown
to require the presence of a Pt black catalyst and to result in the production of
CO2 as one product of the reaction. The rate of CO; production, as monitored by an
infrared analyzer, was shown to be roughly equivalent to 14 ma/cm? for 1 M CH30H-
0.025 M Na2MoO4, and about half this rate for 1 M HCHO under comparable conditions,
as shown in Figure A-3 . This result is just the reverse of the reactivity order
noted with heterogeneous Pt-Mo catalysts. Although continuous data on CO3 produc-
tion vs time were recorded for the CH30H run, the data did not plot properly for
any simple rate expression. Rate data obtained using HCHO fuel and CO2 pickup in
Ascarite, however, did plot equivalent slopes at two different concentrations for
a reaction mechanism first order in Mo*6, as shown in Appendix A-7 . Although the
reactivity order of CH30H and HCHO i8 reversed from that obtained with the Pt-Mo
electrode itself, it should be pointed out that the chemical reactivity as observed
by these methods need not correspond to that observed in the redox electrode system
since desorption of the product molybdenum is not inherent in the electrochemical
scheme while it is required in the chemical measurement.

Figure A-3
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Part ¢ - Coulometry

The molybdenum product of the chemical reaction with fuel in 3.7 M H3804
forms a red-brown solution. 1In the absence of a simple method of determining the
valence state of molybdenum in this solution, a solution of identical appearance
was prepared by electrochemical reduction of molybdate. The quantity of coulombs
passed to reach equilibrium at +.25volts vs N.H.E. was used to determine the valence
state of the product solution. It was found that these coulometric results agreed
within 1% of the quantity necessary for a one-electron reduction of the molybdenum,
i.e. to the pentavalent state. (Table A-8, static system)

In view of the well-known complexing tendencies of molybdenum species, it
was considered advisable to verify this result under conditions designed to minimize
possible complex formation. Thus, a reaction of the type

Motb + 3¢ — Mo*3 (electrochemical)

Mo*3 + 2 Mot6 ——=3 Mot5 (disproportionation or complex formation)

could possibly be occuring in the system. Such an over-all reaction would also
indicate the quantity of coulombs expected for a one-electron reduction.

An apparatus was designed in which Mo*6 was reduced at its limiting current
density as it flowed through a platinized porous electrode. (Diagram in Appendix
A-8 ). This system permits reduction of Mot at the movin boundary in the absence
of significant Mot6 concentration downstream. Thus if Mo¥3 s formed, the coulombs
passed should indicate a relatively high recovery of the current from the 3-electron
reduction. However, operation of this system confirmed that the reduction of Mot+6
was indeed a one-electron process. Based on this electrochemical evidence, shown
in Table A-8 , the chemical reaction also is assumed to involve reduction to the
pentavalent state.

Table A-8

Potentiostatic Coulometry Of Mo+6

T = 25°C, Potential = +0.25 Volts vs N.H.E.

Coulombs Coulombs
System Calculated Observed
Static 571 573
Flow 401 X 390

Part d - Electroclemical Behavior

Anodic chronopotentiograms on Pt in pentavalent molybdenum solutions and
on prepared Pt-Mo electrodes in 3.7 M H2S80; indicate the reoxidation of Mot5 start-
ing at potentials near +0.3 volts vs the normal hydrogen electrode (N.H.E.). Half-
wave potential for the reaction in both cases was about 0.4 volts more anodic than
the N.H.E., as shown in Figure A-4 . Efficient operation in conjunction with a
CHq0H electrode then necessitates that the bulk of the molybdenum be in the +5 state,
in order to maintain the least polarization. Thus the chemic ‘! reduction reaction
must be rapid compared to the desired current load to maintaii. -ood potentials.
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Figure A-4
Anodic Transients Of Pt And Mo Systems
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Observations on electrochemically produced solutions of Mot> indicate that
only a very small quantity of Mo?5 exists as the free, oxidizable species. Anodic
transients immediately following cathodization of the test electrode, however,
indicate high quantities of oxidizable Mot3. Thus it is assumed that Mo*d in
solution exists as a relatively inert polymeric species which must dissociate before
electrochemical oxidation can take place. Adsorbed Motd zpparently exists in a form
which can be electrochemically oxidized much more easily.

Part e - Adsorption of Molybdenum

Considerable effort was directed toward defining the conditions for main-
taining a favorable quantity of reactive molybdenum adsorbed on the Pt electrode
surface with and without the presence of fuel. This information was obtained
through the analysis of ''layers', preadsorbed in various solutions of molybdate and
fuel, which were rinsed and anodically stripped in a separate electrochemical cell.
This technique, while allowing certain undefined variables, permits the separation
and examination of independent factors in molybdate and fuel audsorption. It was
found that a single chemisorbed layer of molybdate was sufficient to produce
reasonably good performance in a subsequent performance run with HCHO (Appendix A-9).
It was also found that molybdate adsorption must occur before contact with fuel
(especially HCHO) in order to prevent permanent blocking of adsorption sites by fuel.
Furthermore, an adsorbed molybdate layer in the absence of fuel was able to with-
stand 50 successive complete oxidations and reductions in 3.7 M H2804 with only a
loss of approximately one-half the adsorbed material. A single complete oxidation
in the presence of fuel however served to completely eliminate all reactive molyb-
denum from the electrode (Appendices A-10 and A-11).
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Similar experiments designed to test the relative adsorbability of Mo+5
and Mo*6 indicatedthat adsorption of both sgecies is comparable but that desorption
of Mo*6 occurs 2ore easily than that of Mo*>. Thus, rinsing of preadsorbed layers
of Mo*5 and Mo*® removed far more Mot from the electrode (Appendix A-12).
Additional experiments indicated that a preadsorbed layer of fuel was essentially
impervious to replacement by molybdate and thus was a potential cause of failure
in the redox system (Appendix A-13).

Part f - The Proposed Mechanism

Based on the observations to date, the Pt-Mo fuel reaction mechanism for
both the heterogeneous and homogeneous systems may be summarized as follows:

Chemical Reaction:

Motb (ads) + Fuel ——= Mo™ (ads) + COz + H20

Electrochemical Reaction:
Mot5 (ads) ——= Mot6 (ads) + e-
Irreversible Failure:
Mo+6 (ads) ———n Motb (soln)
Fuel ——= Fuel (ads strongly)
The concept of irreversible failure by strong fuel adsorption is compatible
with the fact that monolayer coverage of Pt with fuel occurs at all potentials
between zero and ~— 40.4 volts vs N.H.E. although no oxidation reaction occurs in

these regions.

Part g - Performance of Pt-Mo Systems

Subsequent to the establishment of the Mo-fuel reaction mechanism, further
testing was directed toward improving chemical catalysis of the Mo-fuel reaction,
and finding means of avoiding the irreversibility discussed previously.

Platinum catalysts prepared by NaBH; reduction of Pt salts have been shown
to provide superior electrode activity, especially with HCHO fuel. For example,
using this catalyst with acid solutions of 1% NajMoOg; at 82°C., HCHO limiting
currents have been obtained in excess of 200 ma/cm2. Activity of this degree provides
about 50 ma/cm? at +0.26 volts vs N.H.E. (Appendix A-14). This type of electrode
shows an activation energy for molybdate electro-oxidation of *-11 kcal/mole
(Appendix A-15). Methanol activity on similar electrodes was !~w, however, the per-
formance being comparable to Pt alone beyond ~ § ma/cm?. A single electrode
prepared by this technique showed good reversibility for the HCHO reaction after a
long series of tests. It is possible that an aging effect, with loss of fuel
adsorbability, was responsible for this improved reversibility. Electrodes in all
cases may be reactivated by removal to fresh 3.7 M HyS0, solution and alternate
anodization and cathodization. Thus the concept that it is necessary to remove
strongly adsorbed fuel from the electrode is reinforced.

A brief screening was carried out to see if other catalysts in addition
to Pt might be suitable for the Mot5 ——> Mo*6 electrochemical reaction. Initial
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tests were made on Au, W and Ta, using constant current scanning techniques. It
was found that of the three tested, both Au and W showed electrochemical activity
for Mot5 oxidation. Since neither material shows appreciable affinity for the fuel
electrochemical reaction, this finding advances the possibility of a mixed catalyst
with electrochemical oxidation and chemical reduction taking place on different
sites. A Pt+Au electrode prepared to test this concept, however, exhibited HCHO
activity comparable to that of Pt alone. As yet, no more successful system has
been prepared. Results with Pt and Pt+Au are detailed in Appendix A-16.

Part h - Other Redox Couples

In addition to the Mot6 - Mo*> couple, a brief survey was made of other
couples which might exhibit similar behavior with CH30H. Thus, the ferro-ferri-
cyanide, ferrous-ic-tartrate, ferrous-ic-oxalate and cobaltous-ic-oxalate couples

were screened in 3.7 M H2504 at 25°C. The tests consisted of observing the constant

current oxidation waves of the reduced forms of the couples on platinized Pt. No
significant oxidation was shown by these systems.

Phase 5 - Further Mechanism Studies With Pt

In addition to the mechanism work performed with the Pt-Mo system,
further work has been carried out on the reaction of CH30H with Pt catalyst in
order to better understand the limitations of this system (1).

Part a - Experimental Technique

Information on the CH30H reaction limitations on Pt black has been
obtained from a voltage scan study. This technique involves the measurement of
current at an electrode as its potential is linearly changed between two desired
levels. Peak currents during this procedure are related to rate limitations in
the system and can be used for kinetic analysis. The scans were obtained by
driving a platinized Pt electrode with a potentiostat fed by a motor driven linear
potentiometer. Currents were measured from the voltage drop across a precision
regsistor. A diagram of the apparatus will be found in Appendix A-17. Voltage
scans were obtained for the CH30H reaction on a Pt black electrode, both as a
function of temperature and CH30H concentration. A typical scan for 1 M CH30H @
25°C is shown in Figure A-5 . Appearance of distinct separated forward and
reverse peaks is characteristic of these oxygenated fuels (3).
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Part b - Temperature Study

The voltage scan technique was applied to a CH30H electrode operating
at various temperatures in the range 25-75°C. Current-voltage traces were
obtained for a potential sweep from O~ +1.5 volts vs N.H.E. in 1 M CH30H - 3.7 M
HpS04. Forward and reverse peak currents were measured and plotted vs reciprocal
Kelvin temperature.

The data indicate two distinct processes with different activation
energies for the forward and reverse scans. Thus forward scanning indicates a
process with 9.4 kcal/mole activation, too high for diffusjonal limitation, while
reverse scans indicate the possibility of a diffusion limited reaction with 5.3
kcal/mole activation (Appendix A-18). This evidence indicates activation of the
Pt surface following the reduction of surface oxide. Moving the electrode
potential into less positive potential regions however appears to deactivate the
surface and cause the appearance of a nondiffusional limitation.

Part ¢ - CH30H Concentration Study

Voltage scan information was also obtained in systems at 25°C with CH4,OH
concentration varying between 0.025-1.0 molar in 3.7 M H3S04. Forward and reverse
peak currents were plotted against CH30H concentration. It was found that reverse
peak currents gave a fairly linear dependence on CH40H concentration. Forward
peak currents however did not give a linear dependence above CH3OH concentrations
of 0.25 M. (Figure A-6 )
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Figure A-6

Dependence Of Forward And Reverse
Peak Currents On CH30H Concentration
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The nonlinear forward peak dependence is compatible with the adsorption
control previously postulated from other types of experiments(l). The linearity of
reverse peak currents,moreover,is entirely consistent with the low energy of
activation observed in the temperature study, if a diffusional limitation is
assumed to exist in the reverse scan.
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4.2 Task B, Air Electrode

As previously reported (1), a unique redox system is being developed for
use at the air electrode in the methanol-air fuel cell. This redox system is based
on the electrochemical reduction at the cathode of a small amount of HNO3 (1 wt %)
in the H504 electrolyte. 1Its inherent advantage compared with a conventional air
electrode is relatively stable performance with low polarization at practical
current densities. However, this system requires efficient chemical regeneration
of HNO, from the electrochemical reduction products in order to minimize HNO3 loss
and the problems of replacing it. Therefore, laboratory research has concentrated
on improving regeneration efficiency. In addition, engineering studies have begun
on applying these results to practical cell configurations.

Phase 1 - HNO3 Regeneration,
Laboratory Studies

The regeneration of HNO3 in H2504 involves the oxidation of NO formed at
the electrode with 02 from air to NO2 with subsequent hydrolysis of NO2 to HNO3.
The first of these steps is slower in the electrolyte solution than the second,
and efficient regeneration cannot be achieved by simply passing air through the
electrolyte. Therefore two approaches to improve regeneration were studied. In
one approach, increased surface area was provided in and above the solution with a
glass wool packing. In the other, a foaming surfactant was added to obtain more
effective contacting of NO and 02 within the resulting small foam bubbles.

Part a - Experimental System

The experiments were conducted under standardized conditions to compare
results on a relative basis. All runs were carried out in a concentric glass cell
with a driven 5 cm x 7.6 cg platinum basket anode. A platinized platinum electrode
with approximately 6 mg/cm“ of platinum black was employed as the cathode. The
equipment was detailed in the previous report (1).

The electrolyte was 3.7 M electrolyzed H2S804 (30 wt %) and 0.2 M HNO3
(1 wt %). Air or oxygen was injected into the solution at flow rates between 15
and 30 cc/min. These flow rates are several times in excess of the stoichiometric
amount. The gas injector was a horizontal glass frit with downward gas flow. The
temperature was 82°C and the current density approximately 30 ma/em?, with two runs
at 72 and 93 ma/cmg respectively. Catholyte and anolyte compartments were
separated by an alundum thimble wrapped with an ion-exchange membrane. The sur-
factants were employed in concentrations between 0.05 and 1.0 wt % and the foam
layer was held at a fixed level with minimum fluctuations. The polarization of the
air electrode increased at lower HNO3 concentrations and varied between 0.2 and
0.4 volts relative to theoretical 02. The results of these tests are summarized
in Appendix B-1 .

Part b - Test of Surfactants

Previous studies showed that using foaming agents in the regeneration
cell improves contacting between NO and 02 for the gas reaction within the foam
bubbles. The foam also furnishes electrolyte in the walls of the bubbles, thus
supplying a means for draining HNO3 back to the bulk electrolyte.
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The main difficulty encountered in the previous experiments was that the
available surfactants degraded in the highly oxidative cell atmosphere. The best of
the tested compounds was sodium dodecyl oxydibenzene disulfonate (Benax 2Al1 of Dow
Chemical Co.). Thus, several other compounds of the same type were tried. These
are listed in Appendix B-1. Of thése, only nonyl oxydibenzene disulfonate proved to
have improved oxidation stability giving a stable foam during 90 hours under load.
Table B- 1 summarizes these results.

Table B-1

Effect Of Structure On Surfactant Stability

Life Under Load
Surfactant in Cell, Hours

Sodium nonyl oxydibenzene disulfonate 90
Sodium dodecyl oxydibenzene disulfonate 30
Sodium dodecyl oxydibenzene disulfonate (higher purity) 30
Mono phosphate ester of tridecyl alcohol-ethylene oxide adduct 20
Tridecyl alcohol-ethylene oxide adduct 10
Oxydibenzene of high molecular weight Unstable Foam

The use of the longer lived nonyl compound significantly improved the number of
regenerations. This effect is shown in Table B-2, where the regeneration results
with the two best surfactants are tabulated.

Table B-2

Effect Of Surfactant On HNO3 Regeneration Using Oxygen

82°C 30 ma/ecm? 3.7 M H2504 - 0.2 M HNO3
Platinized Pt Cathode 1 wt % Surfactant,
02 Flow 15 cc/min

Regeneration Efficiency
€oulombs/Coulomb Equivalent
Surfactant to HNO3 Consumed

Sodium dodecyl oxydibenzene disulfonate* 24.0

Sodium dodecyl oxydibenzene disulfonate 28.0

Sodium dodecyl oxydibenzene disulfonate 13.3

(higher purity)
Sodium nonyl oxydibenzene disulfonate 35.0
Sodium nonyl oxydibenzene disulfonate¥* 40.4

* Reported earlier (1)
*% 0.4 M HNO3, 1 wt 7% surfactant added in middle of run

Similar runs using air as oxidant however showed no difference in regeneration
efficiency when results with the two more stable compounds were compared. In both
cases, the surfactants were not completely decomposed and a stable foam layer was
maintained after consumption of the available HNO3. Thus,using air as oxidant makes
the physical stability of the single foam bubbles and the contacting of the gases
much more important than the rhemical stability of the surfactants.
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In the same runs, surfactant concentration was varied from 0.05 to 1 wt %

without significant effect.

Table B-3

These findings are tabulated in Table B-3.

Effect Of Stable Surfactants On HNO3 Regeneration Using Air

82°C 30 ma/em?

3.7 M H2504 - 0.2 M HNO3
Platinized Pt Cathode, Air Flow 10 to 20 cc¢/min

Surfactant

Coulombs/Coulomb Equivalend

Regeneration Efficiency

to HNOq Consumed

Sodium dodecyl oxydibenzene disulfonate

Sodium nonyl
Sodium nonyl
Sodium nonyl

oxydibenzene disulfonate
oxydibenzene disulfonate
oxydibenzene disulfonate

14.0
11.0
14.6
12.0

Part ¢ -

As
stability of
was added to
0.015 micron

lyte was found to be in the range of 1 wt %.

Effect of Fine Powders
on Regeneration

shown above, regeneration with air was mainly limited by the physical
the foam. To increase this stability, extremely fine silica powder

the electrolyte. The powder (Cab-0-Sil of Cabot Corp.) had 0.010 to
particle size with 200 m2/gm surface area.
lyte solution for 24 hours prior to use.

It was soaked in electro-

The optimum concentration in the electro-

When this powder was used alone, a

slight increase in the regeneration efficiency due to increased surface area was
obtained. When used in combination with surfactant however, a large synergistic
effect was observed and the number of regeneration cycles on air more than doubled

from 11 to 25.

Table B-4 illustrates these results.

Table B-4

Effect Of Fine Silica Powder On Regeneration

82°C 30 ma/cm?

3.7 M HpS04-0.2 M HNO3
Platinized Pt Cathode, Air Flow 15 to 20 cc/min

Regeneration Efficiency

Silica | Coulombs/Coulomb Equivalent
Surfactant Powder to HNO3 Consumed
None None 2.1
None 1.0 wt % 3.5
Sodium nonyl oxydibenzene disulfonate, 1.0 wt 7 | None 11.0
Sodium nonyl oxydibenzene disulfonate, 0.2 wt 7 [ 1.0 wt % 25.0
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Part d - Effect of Increased
Current Density

Two runs were made using oxygen at 93 and 72 ma/cm2 with sodium nonyl
oxydibenzene disulfonate and compared with corresponding experiments which were per-
formed at 30 ma/cmd to find the effect of current density on regeneration efficiency.

Operation at 93 ma/cm? proved difficult in this equipment and gave poor
results. However, the regeneration efficiency at 72 ma/cm? amounted to 225 coulombs/
coulomb equivalent to HNO3 consumed as compared with only 35.2 coulombs/coulomb
equivalent to HNO3 consumed at 30 ma/cm?. These results are presented in Table B-5.
This increased efficiency was probably a result of better foaming patterns and the
fact that more coulombs pass through the circuit while the foaming agent is being
subjected to the intense oxidizing atmosphere.

Table B-5

Effect Of Current Density On HNO3 Regeneration

82°C 30 ma/em? 3.7 M H2S04 - 0.2 M HNO3
Platinized Pt Cathode, 02 Flow 20 to 25 cc/min
1.0 wt % Sodium Nonyl Oxydibenzene Disulfonate

Regeneration Bfficiency
Current Density | Coulombs/Coulomb Equivalent
ma/ cm2 to HNO3 Consumed
30 35.2
72 225.0%
93 10.0

* 0.2 wt 7 sodium nonyl oxydibenzene disulfonate

Part e - Effects of NaNO3
on Regeneration

Sodium nitrate was tested again as a possible inexpensive and easily stor-
able substitute for HNO3. When added to H2S04 it forms the HNO3 required for
reduction at the cathode. Previously, it gave slightly lower regeneration efficien-
cies although the electrode performance was comparable to HNO3. With the improved
technique used in the current tests, it performed similarly to HNO3 as shown in
Table B-6.
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Table B-6

Effect Of NaNO3 On HNO3 Regeneration

82°C 30 ma/cm2 3.7 M HpS0,
Platinized Pt Cathode,Air Flow 12 cc/min

Regeneration Efficiency
Coulombs/Coulomb Equivalent

LNitrate Source Surfactant to HNO3 Consumed
0.2 M HNO3 Sodium dodecyl oxydibenzene 14.0

disulfonate 1.0 wt %

0.2 M NaNO3 Sodium nonyl oxydibenzene 14.6
disulfonate 0.2 wt %

Phagse 2 - HNO3 Regeneration,
Engineering Studies

The purpose of the engineering research work in the HNO3 regeneration
study has been to develop a test system which 1s similar to an ultimate compact
fuel cell. This system must fit the anticipated requirements of the ultimate cell,
particularly compactness and simple operation, while achieving efficient HNO3
regeneration.

An external regeneration system wherein the reduction products of HNO3
are converted to HNO3 was selected as the most promising. This type of system
permits compact cell design since the space required for regeneration is external
to the electrolyte compartments. It also minimizes the loss of performance at the
nitric acid electrode that has been shown to occur if air flows along the electrode.
Finally, it permits a lower temperature in the regeneration chamber which favors
more efficient HNO3 regeneration.

Part a - Experimental System

The compact experimental Teflon cell and external regeneration chamber
are shown in Appendix B-2. The Teflon cell has 4 inch square electrodes, a size
adopted as a standard for engineering studies. The regeneration chamber is a
1 inch diameter by 6 inch glass tube mounted above the cell and connected by
3 ports. A similar 2 inch diameter tube was used in initial work, but results
showed that the larger volume was not used effectively. A schematic of this
system is shown in Figure B-1.
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Figure B-1

External Regeneration System
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Air is introduced downward through an injector mounted at the top of the cell just
below the electrolyte surface. It is mixed with NO gas which is formed at the
electrode surface by virtue of the electrochemical reaction of HNO3. The gases
pass through the center exit port into the regeneration chamber which contains a
packing material or foam generated in the catholyte by the addition of a small
amount of surfactant. Nitric acid formed in the chamber drains back to the cell
through the side ports.

Regeneration efficiencies were measured during half cell tests in which
the cathode was an 80 mesh or a 150 mesh platinum screen platinized with 8 mg/cm?
of platinum black. The experimental equipment is shown in detail in Appendix B-3.
The tests were made by measuring the amount of HNO3 consumed from a known initial
charge while the cell was operating at 30 ma/em? for a given time interval. The
final HNO3 concentration was determined by measuring the final limiting current
in the cell. The relationship between limiting current and HNO3 concentration is
shown in Appendix B-4. In this way the total coulombic output of the half cell was
compared with the coulombs equivalent to HNO3 consumed. The results of all these
tests are recorded in Appendix B-5.

Part b - Electrode Performance

The electrode performance was measured on the 4 inch square, 80 mesh
electrode at 82°C with 1 wt 7% HNO3 in 30 wt % H2S04. The electrode was polarized
0.17 volts from theoretical oxygen at 30 ma/cm? and had a limiting current of
160 ma/cm2. These results agree with values for smaller electrodes used in
previous laboratory work. The complete comparison is shown in Figure B-2.
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Figure B-2

HNO3 Electrode Performance
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With air injection at the top of the catholyte compartment, there was no
loss in the HNO3 electrode performance due to stirring at air flow rates from 0 to
550 cc/min., a value over ten times the stoichiometric requirement.

Part ¢ - Limitations in
HNO3 Regeneration

The regeneration of nitric acid from the NO gas produced at the electrode
by electrochemical reduction involves the following reactions.

Oxidation: 2 NO + Op=+2 NOj

Hydrolysis: 3 NO, + Hp0=+2 HNO3 + NO

Either .f these reactions can be the rate determining step depending on
the type of reg. .eration system. An added limitation of holdup can occur with an
external regeneration system. This results when regenerated HNO3 is not recycled
from the external chamber to the cell catholyte. It was observed in tests where
a dry glass wool packing was used in the chamber so that any HNOj formed was held
in the packing by capillary forces. Holdup was also observed without packing
when a foaming agent was used. With gas flow from all exit ports, the liquid
recycle to the cell was inhibited. In each case, regeneration with both air and
07 was limited to approximately 2 coulombs/coulomb equivalent to HNO4 consumed.
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The hydrolysis limitation was observed when a recycling sparse foam was
used in the external chamber. This sparse foam consists of large, unstable bubbles.
The small surface to volume ratio of the bubbles results in insufficient capacity
for the hydrolysis reaction. In such a case both air and 02 were observed to give
approximately 4 regenerations.

To achieve the higher regeneration efficiencies, it is necessary to
develop a system in which the rate limiting step is the gas phase oxidation of NO.
This was accomplished by using a recycling sparse foam to eliminate holdup, aug-
mented by saturated glass wool to improve hydrolysis. In such a system, regenera-
tion efficiencies of 6 and 15 coulombs/coulomb equivalent to HNO3 consumed were
measured on air and 02 respectively. The difference in performance for air and 02
verifies that the oxidation reaction was limiting. These findings are summarized
in Table B-7.

Table B-7

Limitations In External HNO3 Regeneration

Regeneration Efficiency,
Coulombs/Coulomb Equivalent

Limitations in HNO3 Regenerator to HNO3 Consumed
Nature Cause Alr 02
Holdup Unsaturated 1.2 1.5

Packing
Nonrecycling 2.6 2.2

Sparse Foam

Hydrolysis Recycling 4.4 4.5
Sparse Foam

Oxidation Saturated Packing 6.2 15.0
With Surfactant

Air Flow Rate = 1.4 - 1.5 Stoichiometric Requirement
02 Flow Rate = 7.0 - 7.5 Stoichiometric Requirement
Regeneration Chamber Temperature = 75°C

The equilibrium for the oxidation reaction is shifted in the direction of
increased NO2 production (4) and the specific rate constant is increased (5) by
lower temperatures. Therefore more efficient regeneration should be attainable at
lower temperatures. Since the rate expression is

= 2
rate = k© P02 Pvo
where
k® = gpecific rate constant
Poy = partial pressure of oxygen
Pyo = partial pressure of nitric oxide

the reaction rate is also increased by greater Oy and NO pressures.
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Part d - Effect of Foam Density

In the initial studies with the external regeneration system using sur-
factant as a foaming agent, the air injector was a 3/16 inch diameter by 3 inch
Teflon tube with 10 small holes, diameter ~~ 300 microns. The resulting foam has
been referred to as a '"sparse foam'" and characterized as having large, unstable
bubbles. In order to get more dense foam with a higher surface to volume ratio,
the Teflon air injector was replaced with a similar thin wall porous glass tube,
pore size = 10-20 microns. The tube wall was 1/16 inch thick which permitted air
flow rates up to 150 cc/min at less than 1 psig, approximately 3 times the stoichio-
metric requirement at 30 ma/cm2. With the smaller pores in this air injector, very
dense small bubble foams were produced in the regeneration chamber using 0.5 wt 7%
sodium nonyl oxydibenzene disulfonate as a foaming agent in the catholyte.

The regeneration efficiency was increased with the dense foam. The
hydrolysis limitation which restricted efficiency to 4.5 regenerations with both
air and 02 in the case of the sparse foam was eliminated. The dense foam gave
up to 5.4 regenerations on air and 8.6 regenerations on 02 at a temperature of 75°C
in the external chamber. In addition, the rate of NO oxidation in the dense foam
was increased by decreasing the foam temperature in the external chamber to 50°C.
Regeneration efficiency improved to 14.6 and over 42 coulombs/coulomb equivalent
to HNO3 consumed for air and 02 respectively. These results are summarized in
Table B-8.

Table B- 8

Effect Of Foam Density On HNO3 Regeneration Efficiency

Temperature in Regeneration Efficiency,
Type Regeneration Coulombs/Coulomb Equivalent
of Foam Chamber to HNO3 Consumed
Air 02
Sparse 75°C 4.4 4.5
Dense 75°C 5.4 8.6
50°C 14.6 42

Air Flow Rate = 1.5 - 2.0 ‘Stoichiometric Requirement
07 Flow Rate = 7.5 - 10 Stoichiometric Requirement

In the tests with lense foams, the capacity of the recycle system was not
sufficient to give a true value for the regeneration efficiency by the standard
procedure. Thus, it was necessar; to discontinue the current for 5 or 10 minutes
every hour in order to allow the regenerated HNO3 to drain into the cell. The
results of these extended runs showed that the efficiency increased with time until
the final steady state value was achieved. At air flow rates greater than stoichio-
metric and regeneration chamber temperatures of 50°C or less, the efficiency
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increased to over 20 coulombs/coulomb equivalent to HNO3 consumed after about
2 hours. An example at 1.1 stoichiometric air flow is shown in Figure B-3.

Figure B-3

Effect Of Extended Runs On Regeneration
Efficiency In Dense Foam

25 | L T i

20

15 =

Air Rate = 1.1 Stoichiometric
Cell Temperature = 82°C
Chamber Temperature = 43°C

] 1
0 60 120 180
Time, min

Regeneration Efficiency, Coulombs/Coulomb
Equivalent to HNO3 Consumed

Part e - Effect of Air Flow Rate

An important variable in the operation of the final methanol - air cell
will be the air flow rate, since it affects problems of heat and mass transport.
Therefore, the effect of air rate on regeneration efficiency was measured in order
to determine the sensitivity required for control and possible limitations in total
cell operation.

Tests were made in both sparse and dense foams and it was found that the
sensitivity of the regeneration efficiency depended on the type of foam. For the
sparse foam, under a variety of operating conditions, the efficiency was low and
had a sharp maximum of about 6-8 regenerations at an air rate of 1.4 times the
stoichiometric requirement. Variation in the air rate of +10% resulted in little
regeneration. The sharpness of this maximum was somewhat influenced by the
reflux rate to the cell. However in the case of the dense foam, the efficiency was
much greater and remained constant at about 25 regenerations at air flow rates
between 1 and 2 times stoichiometric. The results are shown in Figure B-4.
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Figure B-4

Effect Of Air Flow Rate On HNOj3 Regeneration Efficiency
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Air Flow Rate Relative to Stoichiometric Requirements

The observed behavior for the sparse foam would be expected from a con-
sideration of the rate equation for NO oxidation, i.e.

= kO 2
rate k Poz P NO

At air flow rates below the stoichiometric requirement, regeneration is low

because insufficient 02 is being supplied to recover all of the NO. At very high
flow rates, the increased supply of 0, is offset by dilution with Ny which decreases
the partial pressure of NO. The large unstable bubbles in the sparse foam favor
mixing of NO and air which would account for this general type of behavior. How-
ever, the fact that the maximum occurs at 1.4 stoichiometric probably results from
the particular design of the cell and regeneration system.

In the case of the denge foam the reaction bubbles are more stable. This
results in less thorough mixing and the partial pressure of NO is maintained at
a high level. The result is that at air rates greater than stoichiometric the
regeneration process is not sensitive to air flow rate.
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4.3 Task C, The Total Cell

Several new compact fuel cells. were also constructed to study the opera-
tion and interactions of these components in a complete unit cell. The major
emphasis of the work during the past six months has been aimed at studying the
performance of the methanol electrode in the presence of the air-HNO; redox system.
However, half cell studies were also made in these new units to help determine the
nature of the operating problems.

Phase 1 - Construction of Compact Fuel Cell

Briefly, the electrodes in the new cell are square, four inches on the
side, permitting the use of more efficient feed addition and product removal ports.
The square design facilitates quick modification and assembly. Supports in the
electrolyte chambers are used to position the electrodes and membrane. The spacing
between the electrodes is easily modified by use of selected Teflon spacers. The
new compact Teflon cell is illustrated in Figure C-1 and Appendix B-2.

Figure C-1
New Teflon Fuel Cell
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Phase 2 - Methanol Electrode Life Studies

The compact Teflon cell with square 4" x 4" electrodes was set up as a
methanol half cell using a direct current source in series to drive the cathode.
The purpose of this setup was to evaluate long term electrode performance independ-
ently of the other factors that affect total cell operation. This was necessary to
distinguish between effects attributable to total cell interactions and those
present only at the fuel electrode. In addition, this cell was used to obtain
engineering information needed to improve the design of the cell and its components.
A total of six long term performance runs were made in addition to a number of
short term electrode washing and electrode orientation studies.

Part a - Initial Methanol
Electrode Performance Run

All of the methanol electrode performance studies were carried out at
about 50 ma/cm? and 80°C using 30 wt % H2S04 containing methanol fuel. The H504
and methanol were largely commercial grade. In these runs the methanol feed and
water were added continuously to an H2504 electrolyte stream being recycled through
the cell in a manner similar to that shown in Figure C-6. Data from these runs are
summarized in Appendix C-1.

The first experiment, lasting 140 hours, served to establish the opera-
bility of the cell and the auxiliary feed system. It was found that small pressure
fluctuations in the exit gas streams or fuel feed resulted in voltage losses as
high as 50 mv. Hence, the cell was modified for smoother gas exit and a baffle
plate was installed in the fuel chamber for more rapid dispersal of fuel.

With these modifications, the cell was successfully operated for a
scheduled 500 hour period using commercial grade methanol. The methanol reacted
completely to CO2 and H20, the fuel consumption checking the number of coulombs
produced to within 1%. The performance of the electrode gradually decreased with
time from its initial polarization of 0.62 volts so that the polarization at 354
hours amounted to 0.77 volts. However, the technique of periodically open circuit-
ing the cell restored a large fraction of the performance. The results of this run
are highlighted in Table C-1.

TABLE C- 1
Effect Of Constant Current And Open Circuiting On Polarization
Constant Current Open Circuiting
Run Polarization, Run Polarization,
Hour Volts Hour Volts
2 0.65 355 0.67
100 0.66 400 0.69
354 0.77 500 0.70

Subsequent analysis of the electrolyte after the run showed that the
methanol concentration gradually built up within the cell from 2 vol % to 9 vol %.
This excess occurred as a result of a slight error in setting the feed rate.
Previous data indicated that increases in concentration of this magnitude would
result in an increased polarization. This appears to account for most of the
polarization increase that was not corrected by open circuiting the cell.
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The initial performance of the platinum black electrode used in the
first run was about 50 mv below the value usually obtainable. Hence, it was
desired to employ an electrode with normal initial activity. Consequently, other
attempts at a long run were made with electrodes having higher initial activity in
which closer control of the methanol feed rate was maintained. In these runs
operability was poor as evidenced by severe voltage oscillations. These runs were
terminated after 120-200 hours because of external failures of the feed pump and
heat controller. In view of the operability problems a series of short tests were
made, designed to aid in improving performance of the cell.

Part b - Electrode Washing Studies

In the first of these tests an electrode not showing normal activity
was washed continuously with fresh electrolyte solution in an attempt to attain
normal activity. The electgode consisted of 80 mesh platinum-rhodium screen,
freshly coated with 8 mg/cm® of platinum black, and separated from the direct
driven cathode by an AMFion C313 membrane. The C313 membrane was pretreated in
H2504-HNO3 solution at 80°C to remove harmful impurities. The electrolyte solution
in the tests consisted of 1 vol 7% methanol in 30 wt % H2S04. The polarization was
observed while pumping the electrolyte ao%ution(SOO ml/hour jonce-through the cell
at 82°C and a current density of 50 ma/cm“.

Normal activity of the electrode was attained after washing it with
about 1.5 liters of the electrolyte, as evidenced by a reduction in polarization
from 0.60 to 0.54 voits. This washing improvement is shown in Figure C-2. Detailed
data are given in Appendix C-2.

Figure C-2
Effect Of. Washing On Electrode Polarization
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In other similar washing tests, a 150 mesh electrode prepared two
months earlier and stored in water had normal activity. A second freshly platinized
80 mesh electrode required washing to attain normal activity. These data suggest
that some impurity left from the platinum black electrodeposition step, such as
chloride, is removed by washing the electrode.

Part ¢ - Electrode Orientation Studies

A series of tests was made with 52, 80 and 150 mesh size electrodes,
which were tilted at various angles to determine the influence on the voltage
oscillation. All of the tests were made at 82°C and 50 ma/cm? using 1 vol %
methanol in 30 wt % H2804. The 52 mesh electrode showed the smallest oscillations
of 5 to 10 millivolts compared with 50 to 60 millivolts using the 80 and 150 mesh
screens. The data are summarized in Table C-2 and given in detail in Appendix C-3.

TABLE C-2

Effect Of Electrode Mesh On Voltage Oscillation

Electrode Mesh 52 80 150
Mesh Opening, mils 15.2 9.5 4.7

Millivolts Oscillation
At Methanol Electrode
In Vertical Position 5-10 60 50- 60

1 volZ methanol in 30 wt’ H280, at 82°C and 50
ma/cm2.

Tilting the cell by more than nine degrees with the 80 mesh electrodes reduced the
oscillations by approximately two thirds. The 150 mesh electrode showed no oscil-
lation at an 18 degree tilt face up and also a two thirds reduction face down.
This effect is shown in Table C-3 . Detailed data are given in Appendix C-4 .

TABLE C- 3

Effect Of Electrode Orientation On Voltage Oscillation

Millivolts Oscillation
Orientation At Methanol Electrode

80 Mesh Electrode:

VERTICAL 60
9° tilt face up 62
18° tilt face up 15
26° tilt face up 20

150 Mesh Electrode:

VERTICAL 50- 60
18° tilt face up None
18° tilt face down 20

l1vol % methanol in 30% H2S04 at 82°C and 50 ma/cm?.
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As a result of these tests it is evident that these observed voltage
oscillations were caused by trapping of the escaping CO2 product from the
electrode. The trapping of gas between the electrode and membrane was attributed
to warping of the AMFion C313 membrane after installation. Thus, a firm packaging
of electrodes against the membrane was found necessary to eliminate the gas-caused
voltage oscillations.

Part d - Electrode Current
Collection Studies

Polarization measurements were made on the methanol electrode at various
points to determine if current collection was a problem in obtaining the best per-
formance. The measurements were made on an 80 mesh electrode at 50 ma/cm? and 82°C
with 1 vol % methanol in 30 wt % H2804. The current collector was a 1 mil by 3/16"
wide platinum sheet placed peripherily on the electrode. The polarization from
bottom to top of the electrode varied by 0.16 volts as shown in Figure C-3. This
voltage difference varied in a linear fashion with current showing the nature of
the voltage loss to be ohmic. The gas rejection oscillation region was evident
from about one inch from the bottom to the top of the cell.

Figure C-3
Voltage Variation Across Electrode
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Varying the screen mesh and hence the wire diameter influenced the voltage
drop across the electrode. The 52 mesh screen showed 0.10 volts loss compared to
0.16 and 0.12 volts for 80 and 150 mesh screens, respectively. These data summarized
in Table C-4 suggested that some voltage l0ss occurred in the wires of the screen and
that this was a factor in current collection.
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TABLE C-4

Effect Of Electrode Mesh On Electrode Voltage Drop

Electrode Mesh 52 80 150
Wire Diameter, mils 4 3 2
Electrode*, Volts 0.10 0.16 0.12

* Using 0.001" thick x 3/16" wide platinum sheet
around periphery of 4" x 4'" square electrode.

The size of the current collector was increased to show the influence of

better curgent collection on voltage loss across the electrode while operating at

50 ma /cm“ and 82°C. A larger gold sheet reduced the voltage loss about 50% to

82 millivolts. The conventional platinum collector provided with a center cross
design for contact at five points on the electrode reduced the voltage loss to about
45 millivolts. These dats summarized in Table C-5, show that proper current col-
lection is important for obtaining best fuel cell performance. Detailed data are
given in Appendix C-3.

TABLE C-5

Effect Of Current Collector On Electrode Voltage Drop

Electrode Mesh 80

Volts IR Drop Using
A Collector Of:

0.001" x 3/16" Pt Sheet Around Periphery 0.16
0.002" x 1-1/2" Au Sheet Around Periphery 0.082

0.001" x 3/16" Pt Sheet Around Periphery
Plus Five Center Contacts 0.045

Part e - lLong Term Methanol
Electrode Performance

In view of the tests on electrode washing, voltage oscillation, and cur-
rent collection, the cell assembly was modified for the test of the behavior of the
methanol electrode under long term operation. Modification of the assembly involved
using a stable Ionics CR-61 membrane, installation of a good current collector and
packaging with the electrodes firmly in place on each side of the membrane. Also a
vacuum tube controlled relay shut off was provided in case some failure resulted in
excessive electrode polarization.

The long term test was begun using platinum electrodes at 50 ma/cm? and
82°C with 1 vol % commercial grade methanol in 30 wt % commercial grade HySO;. A
29V4
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direct current source was used to drive the cathode. Good control of the methanol
was achieved by matching feed rate of the methanol to its utilization and loss.

After 813 hours of continuous operation, without any equipment failures, the polari-
zation was 0.65 volts versus 0.58 volts normal activity at the beginning of the rum.
Furthermore, open circuiting for a few seconds improved the polarization by 30
millivolts to 0.62 volts polarization. Detailed data are given in Appendix C-1.
During this run the same H2504 was recycled through the cell with continuous methanol-
vater addition. When about 1000 hours running time is attained, the catalyst will

be tested for activity with fresh electrolyte-methanol solutions.

Part f - Material Balances on
the Long Term Test

During the long term methanol electrode performance runs, material and
electrochemical balances were made. These tests confirmed the fact that the
methanol is electrochemically oxidized completely to CO3. The methanol and water
in the CO2 exhaust was determined by condensing the liquid in this gas stream and
measuring its composition. This was compared with the methanol content of the
electrolyte. The methanol concentration in the exhaust condensate was in agreement
with literature equilibrium data (6) at 82°C as shown in Appendix C-4. The amount
of methanol condensed from the CO2 exhaust averaged slightly higher than that cal-
culated for normal saturation at 82°C (Figure C-4). This is probably attributable to
entrainment. The total methanol in the CO2 exhaust amounted to about three pounds
per hundred pounds of methanol reacted electrochemically when operating with 1 vol %
methanol in the electrolyte.

Figure C-4
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Part g - Performance of the
Electrode As a Methanol Barrier

During the long term methanol half cell run, analyses for methanol content
were obtained on both the anolyte and catholyte sides of the cell to determine the
influence of electrochemical reaction on the diffusion of methanol to the opposing
compartment. This is important in a total cell using the air-HNO3 redox system
since any methanol escaping to the cathode side would be lost by chemical oxidation
to CO2.

The analyses confirmed that the electrochemical reaction at the 80 mesh
electrode significantly reduces the methanol content at the air electrode. At
50 ma/cm? methanol escape through the electrode is nil when using 1 vol % methanol
in H2804. With 3 vol % methanol in the H3804, about 1.5 vol % methanol is found in
the catholyte after establishment of equilibrium. These results summarized in
Figure C-5, are in good agreement with the previous predictions (l). Detailed data
are given in Appendix C-1.

Figure C-5
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Phase 3 - Total Cell Operation

The new Teflon test cell (Figure C-1) together with feed, monitor, and
control systems was assembled for testing the combined methanol and air-HNO3 redox
electrodes. The equipment flow plan is shown schematically in Figure C-6 and further
details are given in Appendix C-5.
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Figure C-6
Total Fuel Cell Schematic
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See Appendix C- 5 For Equipment Details

The cell was assembled using the best techniques developed in the previously
described structure. Very tight packing of the electrodes and membranes was made in
order to eliminate the voltage oscillations due to fluctuations in pressure caused by
AMFion electrolyte circulation and gas rejection. The AMFion C313 membrane was found
to buckle sufficiently to permit CO; interference with ionic conductance and was re-
placed with an Ionics CR-61 cation sulfonated polystyrene membrane. Finally,
current collection was further improved by increasing the thickness of the col-
lectors and the number of contact points with the electrodes. A controller to

42




oot ound mEd St EE W) Ememd e

regulate the rate of fuel addition to the cell was built and tested. The con-
troller was designed to maintain a desired fuel concentration within the cell by
adding fuel at a rate proportional to the current. The eircuiting is shown in
Appendix C- 6.

Part a - Electrical Performance

The new compact Teflon unit was tested as a total cell for the methanol
and air-HNO3 redox systemsto determine electrical performance. The tests were made
at 82°C using 1 vol % methanol fn 30 wt 7% H2804 anolyte and 1 wt % HNO3 in 30 wt %
H2504 catholyte with air regeneration. Currents up to 95 ma/cm2 were drawn from
the cell. At 50-60 ma/cm? about 15 mwatts/cm? of power was obtained at the cell
terminals as shown in Figure C-7 This power production was about 507 greater
than obtained in the earlier cell previously reported (1). The power at 50 ma/ cm?
was short of expectations by about 5 mwatts/cm? due to greater IR losses and below
normal anode activity. The detailed data are presented in Appendix C-7.

Figure C-7
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The IR loss in the new compact cell was considerably improved over the
previous cell. At 50 ma/cmZ the IR loss was 0.03 volts when using the 5.6 mil
AMFion (313 membrane close packed between the electrodes versus 0.17 volts in the
previous cell. The Ionics 21 mil CR-61 stable membrane showed an IR loss of 0.05
volts as shown in Figure C-8.
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Figure C-8
IR Loss In Total Fuel Cell

0.25 T T 1/ T

0.20 |- / -
/

Previous
0.1 Cell /
15 \7/ New Cell ]
CR-61 Membrane

0.10 -
/
0.0 | /

IR Loss, Volts

New Cell
313 Membrane

1
0 20 40 60 80 100

Current Density, ma/cm2

Part b - Optimun Electrolyte Composition

The effect of H2S04 corcentration on the performance of the methanol
electrode had been studied extensively. However, additional data was needed on its
effect on the performance of the HNO3-air electrode in order to determine the
optimum acid concentration for a complete cell. Therefore a platinized Pt electrode
was tested with 1 wt? HNO3 over a range of 20 to 60 wt’% H2S04. These data, com-
bined with the data on the performance of the methanol electrode, were used to
evaluate the effect of changing acid concentration in the total cell voltage.

Combining these data and using a typical experimentally measured cell
resistance of 0.5 ohm-cmz, it was calculated that the optimum is obtained at 30 to
35 wt% H2S04. Furthermore, there was a wide plateau of acid concentrations in which
voltage decreased by less than 20 mv from the maximum. Therefore, 30 wt7 H2S04 will
continue to be the electrolyte acid concentration. These results are shown in
Table C-6 and detailed data arc presented in Appendix C-8.
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Effect Of Acid Concentration On Cell Performance

TABLE C-6

Current H2804 Range H2504, wt%
Density For 20 mv For Maximum
ma/ cm? Change, wt?% Cell Voltage |
50 29-43 30
100 23-53 35

Part c¢ - Effect Of Cell
Materials On Performance

As previously reported (1 ), harmful impurities can be removed from AMF-
ion C313 membranes by pretreatment in Hy8504-HNO3 mixtures. Twc total cells were
assembled to test the effect of this treatment on the membrane conductivity and to
evaluate the total IR loss to be expected between the fuel and air electrodes.

Cell performance was measured at 82°C in 30 wt% H2S804 - 1 wt?% HNO3. In one cell
with a 60 mil separation between electrodes, IR loss at 30 ma/cm2 amounted to 0.06
volts. This was in agreement with earlier values obtained using untreated membrares.
The second cell with an electrode separation of 35 mils was surprisingly better,
giving an IR loss of less than 0.02 volts at 55 ma/cm?. In any event the removal

of impurities from the membrane does not impair their conductivity and therefore

the total cell IR loss does not appear to be a serious problem.

Part d - Development Of New Materials

Tests were made of the ability of thin gold coatings to protect base
structural materials against electrochemical attack. Gold-coated 250 mesh stainless
steel screen and a Cu-Sn electrode consisting of 1 mil diameter tubes of 30 mil
length bonded together were tested as fuel electrodes. The electrodeposition of Pt
black catalyst on these electrodes resulted in some corrosion, probably resulting
from chemical attack of the gold by the evolved Cl2. Further corrosion occurred
during their testing because of anodic dissolution of the underlying base metals.
Data on the total cell testing of the gold coated 250 mesh stainless steel screen
are given in Appendix C-7.
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SECTION 5
CONCLUSIONS

5.1 Task A, Fuel Electrode

Phagse 1 - Catalyst Performance Studies
And New Preparative Techniques

The use of NaBH4 reduction to incorporate other noble or base metals into
Pt has the game effect as was previously found using electrodeposition. Both Tafel
slopes and exchange currents increase. However, they generally compensate each
other so that over-all activity is not appreciably improved. Furthermore, the
kinetic parameters can be varied widely so that it appears that the incorporation
of other metals into Pt might produce less expensive catalysts of comparable
activity.

This characteristic is not universal, since other metals respond
differently when combined with noble or base metals. They can be poisoned com-
pletely or not affected by the same metals which cause large changes in the
kinetic parameters of Pt. The reasons for these effects have not been completely
defined, but are probably electronic in nature, producing changes in the d-band
structures, work functions, electrocapillary maxima or other properties of
catalysts.

A new catalyst system proved to be significantly more active. It not
only represents the most active catalyst yet prepared for the electrochemical
oxidation of CH30H, it also shows that the compensating effect of increasing Tafel
slope accompanied by increasing exchange current does not always prevent improved
catalytic activity at practical current densities.

Sodium borohydride failed to reduce a number of metals, hence more active
reducing methods were sought. However, better compounds were not found. Sodium
borohydride is still the most active reducing agent available to date and gives
catalysts of similar performance when used in aqueous or nonaqueous solutions.

Phase 2 - Alloy Formation

The wide variety of catalysts produced is apparently a direct result of
the fact that the reduction of mixed metal salt solutions by NaBH, produces finely
divided alloy powders. Alloying, and not merely physical mixing, is necessary to
produce most of the catalyst performance changes demonstrated. 1Its great utility
lies in the fact that it is a low temperature process that works with a large
number of metals.

Phases3 and 4 - Performance Of Heterogeneous Mo
Containing Catalysts; Mechanism
Of The Pt-Mo Catalysts

Limiting, low polarization current densities of up to & ma/cm? are attain-
able with CH30H on Pt-Mo electrodes while HCHO, the most active fuel, can give from
32 to 64 ma/em2. It has not been possible to increase this current or prevent the
irreversible performance loss at higher current densities. Unless further improve-

ments can be made the Pt-Mo heterogeneous system will not be of practical utility
for CH30H.
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Solutions of Mo used with Pt or Pt + Au catalysts and HCHO fuel give low
polarization current densities of 200 ma/cm? or more. Methanol gives only the low
current density performance of the heterogeneous catalyst system. Under certain,
as yet undefined conditions, the performance with HCHO is reversible, giving a
system that under special circumstances might have some practical significance.

The Mo-fuel reaction in both cases appears to be a surface redox
mechanism. Adsorbed Mot 1s reduced by the fuel to adsorbed Mo*5, with the %ro-
duction of COp. Electrochemical oxidation of the Mo+5 then restores the Mo%®.
Failure of the system occurs when the Mo*6 is desorbed and replaced on the catalyst
surface by the more readily adsorbed fuel.

Phase 5 - Further Mechanism Studies With Pt

The oxidation of CH30H on ordinary Pt surfaces appears to be adsorption
limited. However a freshly reduced surface is instead limited only by the
diffusion of fuel to it.

5.2 Task B, Air Electrode

Phase 1 - HNO3 Regeneration,
Laboratory Studies

Practical levels of HNO3 regeneration with air, namely 20 coulombs/
coulomb equivalent to HNO3 consumed, appear attainable through the use of packings
or foaming agents to improve contacting of the HNO3 reduction products with O, and
Hp0. The previous limitation caused by degradation of the foaming agent has been
partially overcome by the use of more stable surfactants.

The regeneration efficiency can be further increased through the use of
high surface area silica particles in combination with the foaming agent to
augment contacting. Furthermore, increased current density does not impair and
in fact appears to improve the efficiency.

NaNO; continues to look like a convenient substitute for HNO3. It is
more easily transported and there is no resulting loss in electrode performance
or regeneration efficiency.

Phase 2 - HNO3 Regeneration,
Engineering Studies

Engineering studies with the HNO3 redox system show that both the
electrochemical reduction and chemical regeneration reactions can be carried out
successfully in a practical cell with an external regeneration chamber. Electro-
chemical performance agrees with values obtained on smaller laboratory electrodes.
In addition, performance loss due to air injection is eliminated by diverting the
air flow away from the electrode surface. Holdup and hydrolysis limitations in
the external chamber can be avoided by proper design of the system. Furthermore,
the regeneration target of 20 coulombs/coulomb equivalent to HNO3 consumed and a
low sensitivity to air flow rate can be achieved in this type of system through the
use of dense foams and cooling of the regeneration chamber.
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5.3 Task C, The Total Cell

Phases 1 and 2 - Construction of Compact Fuel

Cell; CH3OH Electrode Life Studies

A compact cell, designed for evaluating both cell components and total
cell operation, has been tested to a point where it now has the desired degree of
reliability, ease of handling, freedom from extraneous impurities and low electronic
and electrolytic IR losses.

long term tests of the platinized platinum fuel electrode showed that its
performance could be maintained for extended periods (e.g. over 800 hours) without
a significant loss in performance providing very careful control is maintained on
the CH30H concentration in the anolyte and the cell is periodically open circuited
for several seconds. The reaction goes completely to CO3. The CH30H loss in the
CO2 exhaust when used in 1 vol % concentration amounted to about 3 7 of the CH30H
used. However, most of this is probably recoverable by air condensation at ambient
conditions. In addition, the fuel electrodc, as expected, prevented the transfer of
CH30H to the cathode.

Phase 3 - Total Cell Operation

The new cell design and the necessary auxiliaries operated satisfactorily.
In preliminary tests in the cell, current densities up to 95 ma/cem? were drawn and
15 mw/em? were obtained at the terminals. However, this performance can be
improved upon because resistance of the membrane separator used was high and the
fuel electrode exhibited below normal performance. However, even this performance
is high enough to permit study of total cell performance variables.

Further evaluations of the effect of H2S04 concentration shows that 30 wt 7

H2S04 is optimum, but not critical, since a 10 wt 7% H2S04 change in either direction
results in only a 20 mv loss in performance.
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SECTION 6

OVER- ALL CONCLUSIONS

During the contract period work has been carried out on the performance
and compatibility of the major components of a soluble carbonaceous fuel - air fuel
cell. These studies have resulted in both improved performance and a greater
understanding of the processes involved. The following represent the highlights
of this work.

Fuel Selection

Methanol was selected as the prime fuel. It proved to have such advan-
tages over other oxygenated hydrocarbons as highest reactivity, lowest polarization
under long term operation, and lowest cost. Its two inherent disadvantages, a high
vapor pressure and a poisoning effect on the air electrode were circumvented by
reducing the concentration at the anode to tolerable limits. 1Its concentration in
the catholyte was further reduced by designing the anode so that most of the fuel
is reacted within its structure.

Fuel Electrode Catalysts

The severe polarization occuring at the CH30H electrode was the greatest
source of voltage loss. Efforts directed toward finding a catalyst more active than
platinum and yet stable in HyS0, have uncovered a variety of such catalyst composi-
tions. 1Included are Pt-Fe, Pt-Mo, and a proprietary catalyst first prepared with
corporate funds. These catalysts have activities up to 150 mv better than Pt.

In addition, a life study of about 800 hours on a Pt electrode showed that efficiency
is essentially unimpaired if the cell is occasionally open circuited for several
seconds and the CH30H concentration within the cell is closely controlled.

HNOq Redox Air Electrode

The air electrode being developed is a redox system based on the electro-
chemical reduction of a small quantity of HNOj dissolved in the electrolyte. Air
is used indirectly for chemically regenerating HNO3. Its advantage lies in the
prospects for low polarization and long life. 1Its major problems were ensuring
efficient HNOj regeneration and establishing the compatibility of HNO3 and its
reduction products with the fuel electrode. Regeneration efficiencies with air of
about 30 coulombs/coulomb equivalent to HNO3 consumed were achieved in a practical
cell configuration. 1In addition the tolerance levels for HNO; and CH3O0H were
determined and shown to be usable for efficient cell operation.

The Operation Of A Complete Cell

A variety of complete cells have been built and tested in experiments
ranging in duration from 3 to 35 hours. Good agreement was found when the results
were compared with half cell studies. Considerable improvements have been made in
their performance and reliability. Current densities as high as 95 ma/cm? have been
achieved. Furthermore, power outputs of 32 mw/cm?, ex IR losses and 15 mw/cm? at
the terminals have been obtained with the expectation of higher performance levels
in the foreseeable future.
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SECTION 7

RECOMMENDATIONS

The work during this contract period has been directed at research and
analyses of problems associated with the development of a single fuel cell rather
than in developing or building battery systems. The major efforts have concentrated
on improving the performance of individual cell components and translating the
results into compatible electrode-electrolyte systems in an actual operating cell.
It is recommended that such investigations continue. However, work should also
begin on the development of multiple cell systems. These should not be finished
assemblies, but instead they should be rudimentary packages designed to evaluate
the performance.

Therefore the following objectives should be pursued:

Fuel Electrode Research

Although significant progress has been made in developing improved
catalysts, this still should be the area where the largest increases in cell effi-
ciency can be made. Higher activities and improved temperature response remain
desirable goals. Thus the compositing and testing of new catalyst compositions merit
further efforts. It also is expected that problems in maintaining long term activity
would arise during the work in the unit and multiple fuel cell packages and will
require further basic research.

Air Electrode Research

Assuming the HNO3 redox electrode development continues to be successful,
the major efforts should be concerned with improving catalyst efficiency, especially
at high current densities, and with reducing the volume required for HNO3 regenera-
tion.

Cell Development

Many problems relating to long-term cell operation remain to be solved.
These include handling feced introduction and product removal during long term
operation, minimizing ohmic losses, and developing methods for startup and shutdown.
Such problems should receive attention.
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SECTION 8

IDENTIFICATION OF PERSONNEL AND DISTRIBUTION OF HOURS

8.1 Background Of New Personnel

I Ming Feng (Ph.D., Mechanical Engineering, University of Michigan)has 12 years
experience, primarily in disciplines relating to the mechanisms and principles
of lubrication. 1In this field he has to his credit well over 40 publications.
He joined Esso Research in 1960 after a diversified career at several industrial
organizations and M.I.T. He is currently working on the development of the
total cell.

8.2 Distribution Of Hours

The following are the technical personnel who have contributed to the work

during the reporting period 1 July 1962 - 31 December 1962 and the approximate
number of hours of work performed by each:

Carl E. Heath 347
Barry L. Tarmy 779
Eugene L. Holt 892
Duane G. Levine 906
Andreas W. Moerikofer 847
Joseph A. Shropshire 825
James A. Wilson 60
Charles H. Worsham 934
I Ming Feng 150

Total 5740
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APPENDIX A-1

PREPARATION OF PRESSED ELECTRODES

The electrode structure consists of a Pt gauze welded to a piece of Pt
foil cut to the same size, A slurry of the finely divided catalyst in H,O is
applied to the electrode with a dropper or spatula, depending upon the cOnsistency
of the catalyst, The slurry is partially dried in an oven or by blotting with fil-
ter paper, A smooth Pt sheet is then placed over the catalyst and the entire
assembly subjected to 2000 psi in a hydraulic laboratory press, The result is a
uniform, stable catalyst coat which can be handled in the same manner as an
electrodeposited electrode,
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ALLOYS PREPARED BY NeBH, _REDUCTION

APPENDIX A-5

L = LTX

Catalyst

Pt

Au

Pt-20, 5%Au
Pt-39,0%Au

Pt-63, 0%Au
Pt-76,.4%Au

Ir

Pc-8, 6%41r
Pt-19,8%Ir
Pt-35,8%Ir

Pt-61, 3%.Ir
33%Pt-33%Au-33%Pd*
33%Pt-33%1r-33%Pd*
33%Pt-33%Fe-33%Pd*
Pd

Au-50%Pd*

W

Pt ~507%W*

Pt-80%W*

Ni

Pt-50%Ni*

Pt-50%Pb*

Rh
Rh~50%Au *

°

Lattice Spacing, A

Observed

3,910
4,071
3,918
3,967
4,013
4,033
3,837
3,907
3,906
3,89
3.848
3,984
3,896
3.884

4,013

3.910
3.901

3.877

3.791

3,862

8=6,67 c= -
8*.31 c= =

5.98
4,81

4,054

Literature

3,916
4,070
3.944
3.974
4,004
4,036
3.831
3.900
3.881
3.865
3.852

3,883
3.976
3,159

3,517
3,877(15%N1)**
3,607
3.791(44%Cu)**
3,537
3.862(19%Co)**
4,940

a=6,65 c=5,97
a=h, 25 c=5.46

3,797

* Compositions are of preparative solutions.

Structure
Iype

fo C, C'
”

Tetr, Pb, Pt
Hex,, PbPt
b.ec.c.
f.c,c,

”

%% Refers to composition given in literature corresponding to
observed lattice spacing.

All compositions in atom %
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APPENDIX A-7

FIRST ORDER RATE PLOT FOR HCHO-
Mo+6 CHEMICAL REACTION

1.0 \ ) i

0.9 U\ -

g

0.8 | \\O -

N ]

Pt Catalyst \o

| 0.7 | -
& T = 82°C
0= 1% NaMoO,
006 o 0= 379 NaMOOa n
0.5 —l A
0 1 2
Time, hr
HCHO + H)0 + 4 Mo™® —— O, + 4 Mo®> + 4 1"
b = moles HCHO, a = initial moles Mot6 x = moles COj
-4 '
9% ok (a-4R" B" In £ =

dt

Rate plot assumes n = 1 and concentration of HCHO (b) in excess and constant.
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APPENDIX A-8

DIAGRAM OF EQUIPMENT FOR FLOW COULOMETRY

Nz Pressure

Mo+6 Power
*— Reservoir Supply
Potenti-
ostat 1
Current
Recorder
)
. Ref .
Electrode
L X A
Platinized - / -
Porous Glass| —» —J"‘" —_—
Electrode
- 1 \
L J Glass Frit
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N.H.E.

Volts vs.

APPENDIX A-9

PERFORMANCE OF HCHO - Pt ELECTRODE
WITH SINGLE ADSORBED Mot6 LAYER

e/ e
" 1 | I I
+0.8 T = 25°C.
3.7 M Hy80,
- 1M HCHO
0.6 Pt alone ,—”‘
r—
0.4 |
b
0.2
0 —f— 1 i i |
0.C. .001 .01 .1 1.0

Current density, ma/ cm?
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APPENDIX A-10
EFFECT OF FIFTY SUCCESSIVE OXIDATION -

pweg G $GEEEY e 2w  uEmy GENEE ) G N Sy

N.H.E.

Volts vs.

REDUCTIONS ON ADSORBED MOLYBDATE LAYER

] ' L] T T T T T T

+0.3F ]
0.6 a
0.9 —Mo -

1.2 | No Fuel ]

T = 25°C.

257;;/25‘ % 1'st 25'th 50'th

1.5 b= ] 1 , cycle [cycle cyc1e=J

0 2 4 8 10

Time, sec

In absence of fuel, fifty sucessive
oxidation cycles decrease Mo on

electrode only slightly.
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Volts vs. N.H.E.

APPENDIX A-1l

EFFECT ON MOLYBDATE LAYER OF
OXIDATION IN PRESENCE OF FUEL LAYER

I L I T T T T ™ T T—
wl3
Motd Oxidation
0.6 -
Sweep
2
HCHO Oxidation
0.91F
1.2 259
3.7 M HyS04
40 ma/cm2
1.5, P 1 1 L 4 1
0 2 4 6 8 10

Time, sec

One oxidation in presence
of fuel removes all Mo.
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Volts vs N.H.E.

Volts vs N.H.E.

:

APPENDIX A-12

EFFECT OF RINSING ON

ADSORBED LAYERS OF Mo+5 AND Mo

L L] L] L}
+0.3 -
+0.6 [
+0.9 r———
+1.2 p
'rl 1'2 1
+1.5 L, 1 N i A i 4 A A
0 4 6 8 10
Time, sec
l = 2 gec rinse; 2 = 5 minute rinse
+0.3 i T T Y v T T T L4 1 4
Adsorbed as
Moto
+0.6}
r
+0.9}
+102 P~
1 2
’1 >>
+1.5 A A Il i 4 2 1 1 N
0 2 4 6 8 10
Time, sec

n




Volts vs N.H.E.

+0.6

+0.9

+1.2

+1.5

APPENDIX A-13 A !

EFFECT OF FUEL PREADSORPTION 1
ON SUBSEQUENT MOLYBDATE ADSORPTION E

No Mo Present

HCHO Oxidation

25°C
| 3.7 M HpSOq4 i
40 ma/cm?
Li 1 A 1 1 i Il 1 1 i —_—tr = -;
0 2 4 6 8 10 f.

Time, sec ..

2 min HCHO adsorption first;
2 min Mo*6 adsorption directly following.
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Volts vs. N.H.E.

+0.4

+0.2

APPENDIX A-14

PERFORMANCE OF HCHO ON BOROHYDRIDE - REDUCED
Pt « 1 wt % NagMoOy

Y
7/ T T T T

T = 82°C.
1M HCHO

3.7 M H2S04

ya 1 1

{
o 1 10 100 1000

Current Density, ma/ cm?
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Current Density, ma/ cm?

APPENDIX A-15

ACTIVATION ENERGY PLOT - MotS
ELECTRO- OXIDATION ON Pt+Au ELECTRODE

300 +— ' LB T I 1 I
L o 1 M HCHO
1 wt % NaMoQy
3.7 M H3504
200 ¢ Constant
\ Potential,
e = 40,34 vs NHE

100 \
I )

8
l T

(AE* -tmF) = 11.4 kcal/mole \

10 1 1 | | 1 |

2.8 2.9 3.0 3.1 3.2 3.3

10° x /1 Y
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APPENDIX A-17

DIAGRAM OF EQUIPMENT USED TO
OBTAIN VOLTAGE SCANS ON CH40H

Ref

Cell

B Rg Vv X-Y

A = Measuring electrode, platinized Pt
B = Counter electrode, Pt
Ref = Saturated Calomel electrode
P = Potentiostat and power supply, Duffers Associates Models
600 and 620.
M = Motor driven linear potentiometer
V = Keithley Electrometer 610A with recorder output
R = Precision resistor
X-Y = Moseley "Autograf', X-Y plotter
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Peak Current, ma

3000

2000

1000

500

100

APPENDIX A-18

TEMPERATURE DEPENDENCE OF FORWARD AND
REVERSE PEAKS FOR CH30H OXIDATION

T I T T -
1M 01'13011
3.7 M Hp50,
B ©  PForward Peak 7
\ a Reverse Peak
_\ -
)
~ 5,3 kcal/mole
| -
i 4
I\
~ 9.4 kcal/mol
- -
(o)
| 1 | 1
2.8 3.0 3.2 3.4
10° x 1T (1/°R)
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3.7 M H2804, 0.2 M HN03
Electrodes: Cathodet

Anodes

Gas Injection!

_ Surfactastywt X

Experiments With Oxygen

None (for comparison)
Benax 2Al%* 0.2 wt %
Benax 2A1% 1wt %

Benax 2A1% 0.5 wt %

Cl2-Benax 2AlWk, 1 wt %

Cpp-Benax 2A1%% 1wt %+ ET 374F Lwt 1
Cg ~Benax 2AMWE 1 wt 2

Co -Benax 2A1%4% 1 + 1 wt 1

Cg -Benax 241 1 wt %

Cg ~Benax 2A1%** 0.2 wt %

I1. Experiments With Air

None (for compariaon)
Benax 2A1* 1 wt %
Benax 2A1¥ 1 wt %

Cl2-Benax 2A1%* 1
Cg ~Bonax 2A1%** |
Cg -Benax 2Al*%* 0.
Cg -Benax 2Al%wk 0
Cg -Benax 2A1%** { 0.
Cg ~Benax 2A1™™ 0,05 wt

se of Fine $10. wde ab-o-s1l

No surfactant, Cab-o-sil#f 1.0 wt %
No surfactant, Cab-o-sil®#¥ 5.0 wt %
C9-Benax 2A1%** 0.2 wt % + Cabeo-si1## 0.5 wt %
Co-Benax 2A1%* 0.2 wt % + Cab-o-sil# 1.0 wt %
Cg-Benax 2Al%+* 1,0 wt % + Cab-o-2i1#% 3.0 wt %

Compositfion of Surfactants:

APPENDIX 3-1

HNO, REGEMERATION WITH SURFACTANTS

82%c. 3 _Electron Reaction

platinized platinum basket with § u/e-l platinum black

bright platinum basket, concentric to cathods

glass frit, pore size 10 to 50 microns, placed directly
above cathode, injecting downwards

Por further experimental details see (1)

Gas Flow

Rate, cc/min.

%  Sodium dodecylated oxydibenzene dfsulfonate (Dow Chemical Co.)

50311‘ SO.Na

C1aMas ° "< >

% Same as * but of higher purity

*% Sodium nonylated oxydibenzene disulfonate (Dow Chemical Co.)

5

# Oxydibenzene of higher wolecular weight (Dow Chemicai Co.)

Description of Fine Powder

#4 Fine silica powder, 0.07-0.15 micron particle size (Cabot Corp.).

4 0.2 M NaNOj used fnstead of HNO4.

Coulombs Regeneration Efficiency,
Aversges Current Henused Coulombs/Coulomb Equiv.
Dengity, u(mz x 10° to HNO3 Consumed
32 9.7 4.2
3 18.4 8.0
3 63.4 28.0
31 “h.5 19.4
29 32.0 13.3
28 18.8 7.5
k) 80.4 35.2
31 335%.0 40.4
93 13.4 10.0
72 468.0 225.0
30 4.8 2.1
31 32.0 14.0
31 26.4 10.5
3 24.0 5.7
k1) 25.5 11.0
31 25.5 11.0
n 13.3 5.8
a2 40.2 14.6
31 30.6 12.0
0 8.8 3.5
;, “.3 2.5
31 21.2 9.3
k11 64.8 25.2
10 5.0 2.1

The powder was soaked for 24 hours in electrolyte prior to its use.
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UIPMENT USED IN ENGINEERING STUDIES OF HN03 REGENERATION

APPENDIX B-3

Membrane ——.
Cathode ——_
Cell

3 H , Condenser 1
2 Regeneration

] / Chamber ';
O ) e

9
Anode = X . F‘._ sgandard Cell ;
5

\

Air or 02

8/ VWV | Lugatn

Heater Capillary S

W SN -

-

ATR Rectifier Power Supply, Model 620 C-ELIT
Esterline-Angus Graphic Ammeter, Model AW
Keithley Electrometer, Model 610A
Leeds and Northrup Potentiometer, Model 291897
with Pt-Pt 10% Rh Thermocouple
Fischer Regulator, 67FR108
Fischer and Porter Rotemeter
FP 1/8-16-5/70 or O2F - 1/8-16-5/70
Heating and Control Circuit

Glas-Col Heater

West Gardsman, Model JP

Iron, Constantan Thermocouple

Variac Autotransformer, Type WIOMI-3

HB Mercury Relay
Thermo-ElectricPotentiometric Pyrometer, Model
7020H with Iron, Constantan Thermocouple and
Thermowell
Variac Autotransformer, Type WIOMI-3
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Limiting Current Density, ma/cm?

150

100

w
o

APPENDIX B-4

THE EFFECT OF NITRIC ACID
CONCENTRATION ON LIMITING CURRENT

T = 82°C. P=1 atm
Electrolyte: 3.7 M H2804
Electrodes: Pt Screens with

8 mg/cm? Pt Black

HNO3 Limiting
Electrode Concentration, Current gensity.

Mesh wt % ma/cm
52 0 0

52 0.4 10

52 0.6 45

52 0.8 105

52 1.0 165

80 0 0

80 0.7 90

80 1.0 160

150 0 0

150 0.54 30

150 0.91 150

150 1.0 155

Figure B1

Limiting Current for Nitric Acid Solutions

® 52 Mesh
® 80 Mesh
4 150 Mesh

0.2 0.4 0:6 67%

HNOa Concentration, wt %
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#¢ Lxtonded runs ave srplained on page 3)
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3.0 30 10110 5.4 Ate 1
3.0 3352 16056 . 0, 1
3.0 5430 16290 LB 0 1
3.0 3640 16920 146 Mr 1
3.0 M2 117% 8.7 Ar 1
3.6 N6 9360 8.1 Mr 1
3.0 9884 29652 2.1 AMr 1
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APPENDIX C-1

METHANOL ELECTRODE LIFE STUDIES

Conditions, Performance and Compositions

Run Number

Run Hours

Cell Temperature, °C

Current Collector

Cathode, 8 mils thick*

Anode, 8 mils thick*

Membrane, 5.6 mils thick

Electrolyte Between Electrodes

Current Density, ma/cm?

Volts Polarization At Constant Current
Volts Polarization With Open Circuiting

Feed Solution During Period:

Methanol, ml
Water, ml
Total, ml

Feed Solution For Run:

Methanol, ml
Water, ml
Total, ml
Methsnol, ml/hr
Condensate From Exit Gas Streams

Anolyte Electrolyte Recycle:

Hy804, wt%
Methanol, vol%

Fuel Fed:

Methanol, vol%
Water, vol%

0 22 48 72 96 120 14499k

95 82 82 82 80 82 82
--0.001" thick x 3/16" wide Pt sheet on edges---
cesmmeca -Pt black on 52 mesh Pt screen----------
--------- Pt black on 52 mesh Pt screen----«=----
cevmcmoncsrcnn wee= AMFion C313-c-cecccccccueanan
-------------------- 77 milg---ccccccconranccnan.

55 15 45 64 30 50 32
0. 63 0057 0074 - - - -

- - 0.67 0.70 0.73 0.70

- 20, 40.8 23.8 74.2 55.7 -

0.4
- 9.6 19.2 11l.2 34.8 26.3
0.0 60.0 35.0 109.0 82.0

- 20.4 61.2 95.0 159.2 215.9
- 9.6 28.8 40. 74.8 101.1
- 30.0 90.0 125.0 234.0 316.0
- 0.93 1.28 1.18 1.66 1.80
------- Returned to cell through gas exit
30.0 - - 30.0 26.3 -
------------------ 1.0 nominal--~------=-
...... Y 1. 1 2
.............. S

* Electrodes square shape, 90 cm2 area in use.

%k Matheson Spectroquality grade methanol.

#*% Shut down because of poor performance caused by membrane breakage, catalyst loss, and

electrode warpage.
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APPENDIX C-4
METHANOL LOSS IN CO, EXHAUST

The CH30H contents of 3.7 M H2504 electrolyte,and condensate from the COj
exhaust plotted in Figure C-1 were determined by colorimetricchemical analysis.
Chemical analysis involved distillation of CH30H from the sample to free it of H2804
and reacting with ceric ammonium nitrate solution. The CH30H hydroxyl group produces
a red color. The intensity of the color,related to the CH30H concentration, i's
determined on a colorimetric electrophotometer (7). The CH30H contents of the
solutions were also calculated (g) from the solution densities, determined by
weighing a measured volume at 25°C. Correction was made for H2804 content. The
calculated data are shown in Appendix C-1.

Figure c-1

Effect Of CH30H Concentration In Electrolyte
On Its Concentration In COy Exhaust Condensate

s 20 T T T |
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8 Data at 82°C.(6) -
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0 1 i
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CH,0H Concentration in Anolyte, vol %
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APPENDIX C-5

TOTAL CELL EQUIPMENT DETAILS

1. The Teflon cell consists of two halves machined from a 5-3/4" x
5-3/4" x 3/4" block fastened together with twelve #10-32 stainless steel bolts
through 13/64" holes around the outside cell chamber. The cell chamber is 1/4" deep
x 4" x 4" provided with a 0.025" depth by 3/16" ledge for support of electrodes and
current collectors. Four 1/4" pipe thread holes are provided for liquid passage,
and a top hole and slot for gas escape. Five 1/4" x 1/4" Teflon posts assure firm
support of electrodes and membrane.

2. The cell is heated with a Glas-Col heater, 500 watt, 110 volt, using
I1.C. thermocouples of inside dimensions 6-1/2" x 2-1/2" x 6" depth with open top
and two vertical side slots on each side of 1/2" width by 4-3/4" depth centered
3-1/4" apart, and a center slot on each side 1" deep. A Viton rubber cup in the
heater bottom provides protection from acid leakage. The temperature is controlled
by a Duenna controller Model J.

3. The acid electrolyte was recycled with a Model 2-6000 Buchler Micro-
pump, 115 volt, 14 RPM, 60-950 ml/hour. The feed was pumped with a 5.7 rpm Buchler
pump, 25-450 ml/hour. Lower rates were obtained by using an Eagle Signal Flexopulse
timer.

4. Sealed fiber type Calomel electrodes, Beckman Model 11-505-80, were
contacted with the back side of each electrode via a capillary tube.

5. Esterline Angus Recorders, Model AW, were used for recording voltages
and currents. One ma recorders, operated from a Model 610A Keithley Electrometer,
were used for voltages. Shunts in the ranges of 0.5, 1.5, 5, 10, 15 and 50 amperes
were used with the 150 ma Model AW recorders for currents.

6. The coulometric timer (diagram shown in Appendix C-6) was operated
across the 100 mv Esterline Shunts through a 20 ohm resistor. With the 5 amp
shunt, 0.1% of current passed through the coulombic timer, and 0.33% passed with
a 15 amp shunt. The resultant voltage drop in the timer is superimposed on a
generated ramp voltage signal designed to trigger a timer for operating the feed

pumps.

The superimposed voltage is dependent on the current from the cell. The
level of the superimposed voltage determines the time on the ramp during which the
pump timer operates. This combination of current dependent voltage and comparison
ramp voltage results in a running pump time which is a function of cell output
current. Since the ramp signal is not perfectly linear, calibration under cell
conditions was necessary. Calibration was made with 5 and 15 amp shunts at
currents from 0.45 to 10.5 smps. The deviation from linearity for timer on versus
% of shunt used was found to average less than 1%. But if operation of the cell
is confined to a given current density than essentially a perfect match between
feed control and coulombic cell output can be made from the calibration. Of
course, suitable allowances have to be made for chemical losses. The calibration
below shows that the coulombic timer is on 51.2% of the time at 100% of the shunt
reading and 1% of the time at zero shunt reading or no current. The 1% at zero
shunt reading represents the trigger level point with no superimposed voltage drop
on the ramp signal.
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APPENDIX C-3 gcour'n.)
TABLE C-1

COULOMETRIC TIMER CALIBRATION

Shunt % Time On,
Amps to Scale Basic Timer, Deviation From

Shunt Reading | % of Time On | Mean Linearjity Line

5.0 100 51.2 =2.0
4.0 80 42.8 0.0
10.5 70 37.5 0.1
3.0 60 32.9 0.5
2.0 40 22.1 0.8
6.0 40 22.3 1.0
0.89 17.8 10.0 0.3
0.45 9.0 5.6 0.1
0.0(Est.) 0.0 1.0 0.0

7. A standard vacuum tube controlled relay shut off was provided for
opening the circuit of the direct current source and shutting off the fresh feed
pump in case of excessive polarization at the methanol electrode. The shut-off
point may be selected. The controller was hooked in parallel across the 610A
Keithley Electrometer measuring the methanol voltage.

8. Standard recycle timers were used in series connection with the
current flow for opening the circuit at fixed intervals to decrease the polariza-
tion at the methanol electrode. The circuit was opened at 1 to 3 hour intervals
for 10 to 15 seconds. The timers hooked in tandem are manufactured by the
Industrial Timer Corporation, Models ET 3H and ET 608.
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APPEWDIX C-?

TOTAL CELL STUDIRS WITH CM3ON FUKL AND AIR-WNO3 REDOX SYSTEM
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APPENDIX C-8

EFFECT OF H, SO, CONCENTRATION ON TOTAL CELL PERFORMANCE

2=,
Platinized Pt Electrodes, o.sracuaou, 82°C , 1 wt% HNO3

50_ma/cn’

H SO4 Total Cell Voltage

anc, Polarization, Volts With 0.5 Ohm * Cell

wt’h 9, CH,OH Excluding IR Resistance

10 --- 0.53 --- .--

20 0.30 .55 0.36 0.33

30 .26 .56 .39 .36

40 .24 .58 .39 .36

50 .22 .61 .38 .35

60 .23 .63 .35 .30
100 ma/cm?

10 ——- .55 --- .--

20 .- .56 --- ——-

30 .34 .58 .29 .24

40 .33 .60 .28 .23

50 .33 .62 .26 .19

60 A .65 .12 .02

* Experimentally determined in complete cell,
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